a2 United States Patent

Pareek et al.

US009442995B2

US 9,442,995 B2
Sep. 13, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)
(65)

(63)

(60)

(1)

(52)

(58)

LOG-BASE DATA REPLICATION FROM A
SOURCE DATABASE TO A TARGET
DATABASE

Applicant: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

Inventors: Alok Pareek, Hillshorough, CA (US);
Mahadevan Lakshminarayanan,
Chennai (IN); Avinash Dubey, Madhya
Pradesh (IN); Scott Corbin, Spooner,

WI (US)

Assignee: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 13/956,175
Filed: Jul. 31, 2013
Prior Publication Data

US 2013/0318044 Al Nov. 28, 2013
Related U.S. Application Data

Continuation of application No. 13/077,760, filed on
Mar. 31, 2011, now Pat. No. 8,510,270.

Provisional application No. 61/368,141, filed on Jul.
27, 2010.

Int. CL.

GO6F 7/00 (2006.01)

GO6F 17/30 (2006.01)
(Continued)

U.S. CL

CPC ... GO6F 17/30575 (2013.01); GOGF 17/30067
(2013.01); GOGF 17/30581 (2013.01);

(Continued)
Field of Classification Search
CPC .o, GO6F 17/30575;, GO6F 17/30657,

GOG6F 17/30581; GO6F 17/30067
See application file for complete search history.

160

(56) References Cited
U.S. PATENT DOCUMENTS
6,687,848 Bl 2/2004 Najmi
6,753,889 Bl 6/2004 Najmi
(Continued)
FOREIGN PATENT DOCUMENTS

CN 101615199 12/2009

CN 101719165 6/2010
(Continued)

OTHER PUBLICATIONS

Fred Louis, “Oracle Golden Gate: Architecture for Real-Time
Replication” Jan. 2010, 69 pages.*

(Continued)

Primary Examiner — Loan T Nguyen
(74) Attorney, Agent, or Firm — Tucker Ellis LLP

(57) ABSTRACT

A system and method for transferring data between different
types of systems, and in particular uses log-based replication
to transfer data between different types of systems. In
accordance with an embodiment, the system can be used to
perform a one-time or initial copy of the MySQL data from
a source database system to a target database system, and/or
to replicate the on-going transactions captured from a
MySQL database’s binary log into one or additional non-
MySQL database(s) on a continuous basis, such that the two
systems are synchronized for transactions of interest. In
accordance with an embodiment, full or partial data changes
can be extracted from the MySQL binary log, optionally
transformed, skipped or augmented, output or written to a
file, and then applied at any of one or more target systems
(e.g. another MySQL database, or a non-MySQL database),
thereby synchronizing the source and target systems.

20 Claims, 14 Drawing Sheets

Source System (2.0. MySQL Dalabase) is Corfigured to
Write Transacfion Oata to Binary Log

162

During Runtime, Binary Logs are Created and Data Stored Therein as
Event Entries Comesponding to, 6.9 SQL Statements

164

VAM Reads lhe Binary Log Events, and Processes them
into Quews of Data Records

166

Data Record from the Queue and Send it to the VAM AP

When Request for Transaction Data is Recaived, VAM Feiches the |

168

Exiract Process {e.g. Oracle GoldenGate) Creates Trail information
or Trail File (e.g. Oracle GoldenGate Trail File)

170

Trailis Commuricated or *Pumped” to One or Mote Target Systems (e.g.
Non-MYSQL. Database), for Use in Replicating Transaction af those Systems

US 9,442,995 B2
Page 2

(51) Int. CL
GOGF 11/14
GOGF 11/20
U.S. CL
CPC ...

(2006.01)
(2006.01)
(52)
GO6F17/30657 (2013.01); GOGF 11/1471
(2013.01); GOGF 11/2094 (2013.01); GO6F
1172097 (2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

2012/0030172 Al
2012/0137276 Al
2012/0295716 Al

FOREIGN PATENT DOCUMENTS

2/2012 Pareek et al.
5/2012 Todd
11/2012 Lee et al.

JP 2000-082070 A 3/2000
JP 2004-341926 A 12/2004
JP 2005293323 10/2005
JP 2007-114817 A 5/2007
WO 2007134250 A2 112007

OTHER PUBLICATIONS

6,877,023
7,031,987
7,039,773
7,254,586
7,299,230
7,571,173
7,702,698
7,730,107
7,873,635
8,161,468
8,224,834
8,402,358
8,666,939
2002/0169842
2002/0174340
2004/0148585
2004/0254919
2005/0102264
2005/0253739
2006/0041540
2006/0212356
2007/0044069
2007/0226263
2007/0288458
2007/0299885
2008/0077601
2009/0106327
2009/0313311
2010/0042583
2010/0191884
2010/0205123
2010/0274788
2011/0029681
2011/0179011
2011/0229681
2011/0307524
2012/0023116
2012/0030165

Bl
B2
B2
B2
B2
B2
Bl
Bl
B2
B2
B2
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

4/2005
4/2006
5/2006
8/2007
11/2007
8/2009
4/2010
6/2010
1/2011
4/2012
7/2012
3/2013
3/2014
11/2002
11/2002
7/2004
12/2004
5/2005
11/2005
2/2006
9/2006
2/2007
9/2007
12/2007
12/2007
3/2008
4/2009
12/2009
2/2010
7/2010
8/2010
10/2010
2/2011
7/2011
9/2011
12/2011
1/2012
2/2012

Maffeis et al.

Mukkamalla et al.

Hu et al.

Chen

Liou et al.

Yang et al.

Chakravarthy

Shultz

Wang

Todd

Akaboshi

Knauft

O’Krafka et al. 707/615
Christensen et al.
Dick et al.
Sengodan
Giuseppini
Nason

Hu

Shannon
Lambert et al.
Doucette

Liou
Kacmarcik
Pareek

Liou

Dilman et al.
Hoffmann et al.
Gervais
Holenstein et al.
Sculley

Coker

Lee et al.
Cardno et al.
Sakamoto
Aitken

Wilkes et al.
Guirguis et al.

.......... 710/200

Oracle International Corporation, Oracle GoldenGate Administra-
tive Guide, Version 10.4, Oct. 2009, 59 pages.

Unknown Author, MySQL 5.0 Reference Manual Archived version
from Apr. 1, 2010, Jan. 4, 2010, 3 pages.

Soorma, GoldenGate Tutorial 1—Concepts and Architecture, Feb.
18, 2010, 4 pages.

International Searching Authority, International Search Report and
Written Opinion for PCT International Patent Application No.
PCT/US2011/036508, Feb. 18, 2013, 10 pages.

Louis, Oracle GoldenGate: Architecture for Real-Time Replication,
Jan. 2010, 69 pages.

Unknown Author, Oracle GoldenGate, Oracle Data Sheet, Sep.
2009, 4 pages.

Blyth, Oracle GoldenGate—An Overview, Jul. 2010, 58 pages.
Unknown Author, Oracle Technology Overview, Jun. 2010, 30
pages.

Guirguis, et al., BronzeGate: Real-Time Transactional Data Obfus-
cation for GoldenGate, 2010, Proceeding EDBT ’10, Proceedings of
the 13th International Conference on Extending Database Technol-
ogy, pp. 645-650.

Unknown Author, Oracle GoldenGate Administration Guide Ver-
sion 10.4, Oct. 2009, pp. 13-16, 333-337, Oracle Corporation
Retrieved on Feb. 17, 2015, from <URL: https://docs.oracle.com/
cd/E15881_01/doc.104/gg wux__admin_ v104.pdf>.

State Intellectual Property Office of the People’s Republic of China,
Search Report for Chinese Patent Application No. 201180036429.0,
Office Action dated Sep. 1, 2015, 2 pages.

Katsumi Kumakura, “Development of Distributed Database by Way
of Replication”, SQL Server magazine, Japan, Shoeisha Co.,Ltd.,
Feb. 15, 2004, No. 13, pp. 58-66. Partial Translation—English
translation of p. 60 only.

State Intellectual Property Office of the People’s Republic of China,
Search Report for Chinese Patent Application No. 201180036429.0,
Office Action Dated Apr. 1, 2016, 2 Pages.

* cited by examiner

US 9,442,995 B2

Sheet 1 of 14

Sep. 13, 2016

U.S. Patent

 aseqejeq

j36ieL

ielL

\@

L aanbiy

{WYA) ainpoyg sSa20y JopUsh

fuaunn)
8nanQ) piooy Nwwmwm_o 311 507 deug e,
| PIOOSYIRS) I

=] e Ml

«—Josaong|[FH) epromogiesa] [gy || |TOSM o
PERI o japesy || sessE) 9L T
| UDICOSHIFEND WA || Bofeug (fﬂ
8Ll YA TOS A | vOl

zzL- 021 oLl “piL mmﬁmﬁ

14

*~z01

US 9,442,995 B2

Sheet 2 of 14

Sep. 13, 2016

U.S. Patent

(WA anpoy
$3300Y JOPUBA

L

z aanbig
{juaung)
a4 Bo dreug
TN
8y epu) bo N i
o be - : 358qe1R0
gog@. juig vyl . TS
: < a0l
£0000 Gojug P
oy, | 00000 Boug ﬁf\\
A 10000 Bog 801
A4" ~.OvL 14¢)°
sap4 bo
110
/{NQ

U.S. Patent Sep. 13,2016 Sheet 3 of 14 US 9,442,995 B2

160~

Source System (e.g. MySQL Database) is Configured to
Write Transaction Data to Binary Log

162"\ 1

During Runtime, Binary Logs are Created and Data Stored Therein as
Event Entries Comresponding to, e.g. SQL Statements

164~ '

VAM Reads the Binary Log Events, and Processes them
into a Queue of Data Records

166~ 3

When Request for Transaction Data is Received, VAM Felches the
Data Record from the Queue and Send it to the VAM AP

168~ ¥

Exiract Process {e.q. Oracle GoldenGate) Creates Trail Information
or Trail File {e.g. Oracle GoldenGate Trail File)

1?&\]

Trailis Communicated or *Pumped” to One or More Target Systems {e.g.
Non-MYSQL. Database), for Use in Replicating Transaction at those Systems

Figure 3

Sheet 4 of 14 US 9,442,995 B2

U.S. Patent Sep. 13, 2016
182 %
184~
| Parse Log Index Hile to
Get List of Binary Log Files
Read Sequence ID to Get
Logfile Name and Position
188~ |
QOpen Log File
190~/ i 199
Check™ Yes .~ BINLOG_ No Get Next Log
for EOF IN_USE and Active » File Name from
? Binary Log Log Index List
No ’ '
198~ l 196~ Yes
Wait for the
Read Event Next Event
200~ § 1202~ , 204~ |
ggig EE;{;??; | Rotate Event? Siop Event?
206~ y 208~ 4
Pmcesg g‘:e FGet Nextlog {o40 i 212~
Eventand Move tie Name from
BINLOG et Next Log
tO Next E\’em Rotate Evem iN_USE an d Kcﬁ\r’e NO - Fﬂe Name ffﬁm
* * Binary Log Log Index List
] ,
' S

214

Figure 4

US 9,442,995 B2

Sheet 5 of 14

Sep. 13, 2016

U.S. Patent

g ounbig

g ainbiy

¢ 4 4 4 } ¥ a2lg aifg
uopisog o218 a duejg
bey worg | weng | semog | ML gy
403G Bl 18peaH Bjeg 19088 JUaAT
juaAg bo Kieug
*ggz
[jusAs ajejoy | >
_ |
| N
* EERTI R
* TEEREN w
| worg depage] |2
M werg g |
ﬁ uang voiduosag 1ewiod |
| Buoj S9Aq 1 ,29X69KZINRIL, - DIOVIN SO TNIE " ocz

US 9,442,995 B2

Sheet 6 of 14

Sep. 13, 2016

U.S. Patent

ULnog Y3 adf] | adfy g aanbi4
40 2EpEIRN uwmos 1 uwnen
pletd Yy i sbey
A, P
cezioglvsel v ISL{YZRLEl ¥ b /4 1538, y SEA
¥ } 4 } 4 } ¥ | 8 6L | 875a1g
eiepelaly sww%% sadAf junoy |aweN| wybust | SweN | ybuo | J9peSY | Jopeay
pieid pioly uwnjoy [UWMoD | 3qeL ngejgel | 9Q | BSGQ | BieQ | Al
. "~ opz
£ 2anbiy 21eq UN) 6078 WNIGSA
a4} jo ybuay enoy
.
" ERq GO NG | T] SONEN | =
e 8715 oikg W
Uwngen) SUWNjoD | dewng | junos) | JpEsy | Japeay m,
8078 WNIG3W) -4 SInEA MY NN juwnjod uwnjoy; BlEQ | WeA3 S
jo st ai0)g) | “ =
ojpanbay | L& i SEA | B
ahe0ig 81ig ! : 3715 kg M
o1 ieepeiep sww%_z sadfy | Junog | awieN | yBuay | aweN |y)Buat | iepeay | iepeay =
PRI |y im0 uwnied| aigeL g el 40 | HSqg| BEQ | uaA3 @
"z

US 9,442,995 B2

Sheet 7 of 14

Sep. 13, 2016

U.S. Patent

0} a4nbi4
g | sbewpeyy | BlBQ | efeuwyaipg dewlg deu wnon | sepesy | Jope
abeusy SUUIMOD abeu SUwno) uwneg cé_mw msm%o mmm% w%mww
1 Iy 8loeg NN alew) 13y
/xvmm
g a4nbi4
anjeA
UwngeY
ajeq
3
anjep anep anfeA
Ty uwnog vy
JBYIeA 18Y) safieuy
) J f 3
| B
~u|wagjoadiije] sadg | {4]zz]19L] |1 y SOMEA
g s lelv| w w 8| 6| ok
‘ suwnjon | dewyg | JuRo) | Jopedy | iapesy
Sanjep Moy YN | uwnjoy | uwneg | oBRg | juoAg
*0gz

U.S. Patent Sep. 13,2016 Sheet 8 of 14 US 9,442,995 B2

Query Event ~—— Represents ‘Start Transaction’

; Statement

] | Table Map Event

S| = }w Represents First Insert

%" Write Rows Event Statement

0| [Table Map Event

5 = d }.... Represents Second

& | | Write Rows Event Insert Statement

S | | XID Event —~—w Represents 'Commit

H ' Transaction' Statement

\/ Figure 11

Query Event | ——= Represents "Start
2 ~ Transaction’ Statement
| | Table Map Event } A o Ft
2 = ¢ — Represents Firs
g Update Rows Event Upgage Statement
?;’ XID Event ~—ae Represents ‘Commit
2 Transaction’ Statement

<

Figure 12

US 9,442,995 B2

Sheet 9 of 14

Sep. 13, 2016

U.S. Patent

OROR) qwir»&@

YEL "Did

' sz fenss

{Jazizqu ergas
Napogyadhysabe i
AT e T %wmm%%m%?
. {onenegeds AL {incouwnoniebs
{Jduweigain b w (1auiepagiat+
(1sog607p6+ puenoigey el
gmmﬁmﬁwh {veazdepiaigel -+
;Emummomuu (uadeppigeLds
, e = g
., ﬂmmn&m BB ULINGD 1k
mﬂ%am.e. gwm%%m&ﬁ
2 L“ ey g M.C&awomlﬁn
R o
nwammmﬂmmgﬂ& URBWEN b

el U e
o400 w-] <SSR EMMMmMW“w
iarzbo) sLRN) W
Em,»mn,,mﬁmﬁmhu
€< SH I3
agz —*

C)
J3i0H pioasy- & |
| {iBupeandass
foyug {1Bupeaypess
TSk {jucssogienupsss
{lomyeryujaps
{Fozyzmun
{ngepguoeds @mmg%moj%ﬂﬁ%
(e DisbesepBoTng
{icueretjete _ TS -
(HBAOTHCH s B aRONDPINEY): ananppases u
.) 1 pean [pea gy -
s Y STPOLEN] - A OpRIEA U
ﬁsmm%mie. BPH oY | nssannigbory - sossecot b we
- Souginshn | Boppbsiu w-
DiRie nizuegloinging
sagBojsmong S
fosseonigBomad s +
{Juonsogienanias jerpu +

{IROYSOBRINES JonuA +
{iBupeaydols ey +
{{Bupeayuels paum +

(Jszuenugep ferin +
oz erum +

isbruegboty

US 9,442,995 B2

Sheet 10 of 14

Sep. 13, 2016

U.S. Patent

{iBoiereabs
{lawenqcyeds
{hiaryiabe
{uarhanty)-—+
{husAgheIn

uaiboery W
Boreiea ur
yaAsanh e
HITRLENGD Wr
UBNGP W
Kianh w-

waaghnang

S

<<SEIBD>

g£l "91d

(lowenbopeds
{HapeaHas
{uomsodpiugess
{husagpea
{Jozyenuiaps
{ozgemus
HEoug SN0+
{JBowgiosinos

Ew
éﬂ""'

105530044

3

, LBAIBCNYLAAIRIEI) W-

L JHBATY) Jwaagpe W

, usazbosmoyyauangfiojomos we
 aa3deyyeeL) weazdepsion) -
L asdkenny | wesghiend w-
,eagborn s w
ysenusAIdBNAeL W

fus - ngboi -

Suus - aweybop w-

» OV 01 agoes

1004 : Buuosods -

1093

e Saa

§

?

(piosysEpinapuey
(apdnfeyiipunio oy
{Yadks uonzsednydyiabs
fcoayebs

(1ot sued ppe+
{ielquunejaended-
YuaA3shovaR s
HBRISHOYEEDA SSa00u-
(husagsmoyainssannid-
{husaadeyyereys5900:0-
[sAhiennissanoid-
(nrosmlepdnssaiucs
{piooayelojagaiepdnscaite+
{huaagssanods

{fozemmne

flossaonidbary-+
(LossanoidBotns

{
i
g

1

Boyugiosing

ZIBREIBNRIGELD SIRCEIBPRINE W

Qe aybO AR TNSANG 19903 | sepeanBomighshy

GIRANTPIIINT | INOTDpI0Ial w

L
2

105532014607

108S33044 PiICIsy- | |

8

US 9,442,995 B2

Sheet 11 of 14

Sep. 13, 2016

U.S. Patent

{jap 6o mangabs
{hueagsiEony-+
{husageiEoy s

taja4Bo el W
apdbomon -

JaAZaRI0N)

<SSy

o£1 "Oid

HusAIIB0Y T

{lazsmeqes
{ipngats

] {ushzpix o+

{usagpy~+ |

P

JUSAIDINY

{pionayerows

{10 4p10aayp3|RI s f1a0
{pioosnarowa
{Haogpiorypaieaopyaidiabe
(hduzpes

{lindosi+

Upiooaygals

{ipicoayppas
{lananpiosay e+
{Jamnnpicaay

<eRHUb >

ele)

J0SACUBNTY 00 Rt U
KB Yo
g1y DR g Lo eI E

ananypiodzyy

®

¢

afeioig
PICIAY:

{lsigesuery srouwats
(Jomerve: ppes
{J0e: el apnpa¥ Jeacuwar
{fare vz apnpuypoe-
{}2i08 | UB 1 BRAOUIBACHR
{atag e aprxsppe-
Dpspnproregues sy
{Boweipai0-+
{(boe e

SIUSEHY © S3g8L Ue apnps 1k
ISTUSRHD | S8IG8] URH ApnI U

Boyaipsald

&

(H

&

o0

US 9,442,995 B2

Sheet 12 of 14

Sep. 13, 2016

U.S. Patent

By |t

R
sumuenouzge
(umsoyugy

PRI TP &
— (R AR T

)

Pl "Did

® © o
m ﬁ

; <835

1

} o

4 }

{Ip003ysACUIRS
| si0diaaypaieatyaldiabe
{imooayeaouals
{hspucpiniaypaieioryaL g abs
(Rdwgns

Dimdos

(et

DpioosypaiRayelgnd:
{uooaupatesopyalginds
{imooaypajecoqyaidiads
{inscsapaiesoyasgiebs
{Jozieniaaps

{Jayenun
{hoodwapi~+
{eoquape

{pioayppes
{Jananppiayn-+
{lRnannpodaN

SO0 | 1004 i
Xayy e -
AN T HSPA) Li

ananppisIsy)

{Lpicoayerequs)y) feuyproayzegiash w-
{1 iy Aeiypiooss -

[ooghiousg)

th\\&

[Oeayss

RN

{FapUIGEOYILIRIO0DH
e

0 - paziigiusy -

idyuend
<AIRDUAG>

4

@

{lerqussagpuas:
{eecasnngmagar
{eecepansraLar

{suma0e puas-

(erequini)puss-

{JueBige; puss-
(apasnsuesjpuas-
{iuusensues puas-
(iuseysoy puss-
{iysues puas-

{jadd) dpypuas-
{onsodiesuzabs
{uosogpss-
{ipooaymienuryipuss-
{Jsues o dorespuns-

{inimrayeesuass

{ipmongenuonmass

{ieCeRpaR]aaUak
{IRRQuOSSacaRaLIl
ozieiuiops
iz
AT st e
fhoienmnuEouRAG:

055800146677 - sossanosgbal -
SEBADNICIRYT | HNRNTIDIO Bl

OSNG0S

US 9,442,995 B2

Sheet 13 of 14

Sep. 13, 2016

U.S. Patent

8y "9id
Q0 {lvcsegenupos
<SR <L {omenuis
mmmmmu_nw%mmm,, w fboiess:
JUCHSe il ; [peawborgmsiyn-
{idhumgausg uoresadpabs 4 iouzpuss _ @» _w mwn &ﬁmwmu Ma X
(ipionssesueiyabs Uszpenupguens | - itk *w%
Opessue s Sougosing Srpghsheu-
Dawepsuel] 196+ ERTSTE J055330348073 © Kessanoigfey -
{\psuespiehs {lonsonuens ARSCIYY | ssagRsy wr
m&ﬁ%ﬁﬁ%mw mmmwmﬁ,_és: sbevewbo g nsing
F wmaummul Opeayuens <<l
SN mﬁmwwx@* {lazenpers T
\ v {Jngpuas
{hxarobesseppuenshs ﬁ mu* APCIEEAD: {luo d %
R i By (N - o HIEDGeD
%&&émmﬁﬁeﬁ&* P - Cuieiga) sopiado we | kL ,,@ {mepdmgnuss-
isgquinniouets R0 | piokSSESuEn g | ¢ CJUIUOISSIE)) | O|LOESES W {spsuzsappreb
{ela0iougg~+ 700G | PUeSHSey | Jossa01db0Ty ossadoigey - L
fslgcuoisne 74099 | dwensie) Wy | | Jiareoan)y Ranooas” - {pionsse ol
palpuTs Bungages : psveq | jooq) sl
e A N T HTRTS g
IO9 | UORIYLIZA W iog adhjuopeiado Wit ApoRLER g | b Y
2700 | | a5eSSANIBA pib34] : JapeayBoy apeaybol - = {lsdgddyseb-
169 : rgunyefessanwe w- LIS D] ORMMUBONWER] | RILAIONNEA - | 5 . i
U1 2oL ar : BOANTOIRN) | AN9NNPRE U {sponipenoypossasieb-
walgticnzy 8 afipoIeAD m_ﬁﬁﬁeummmmm%mv
<ITS> s S <<[BIu0%> s ﬁﬁw%g«%
spalgy %u ; % ¥ Iigetungas
3 @ @ ® ®

US 9,442,995 B2

Sheet 14 of 14

Sep. 13, 2016

U.S. Patent

{Hzyrgeredsuuno)sieoryeps
{fowenageriobs
{isuunpryebs
(suurjoniouaaunneds
(pioaymequasyy-+
{lpronyeregasnr
{picoayriEGIen Y

1004 - BJEEINaIGRL 1Ry W
TR0 SuRNRE] U
|08 SRR g
[} Lm0y © suwnos v

PICOBNRIRIUISHT

oY

LGRS

{onsoqsts
{uanisogys
{ionisog)~+
{Juosde

ZIB000 Aedsigpayoy wg
28008 w&%ﬂ&
ZIRUODS | prRouabes ug
7ieyne0 | A uogsod wy

,nﬁw.gmvv

&1

S0

oL "Old

(Loepuipapopiads
(JsgngereQuun0RIR0]yap+
{unnngo s
{1aeacubs

{heus0 08+
{hnBuaonjeainds
{jamensaBs
{Lojeapans
{pnetis

T3+
{luurgonns
{nioase

{izoeiBHBIGE 180+
{esnsuesapnngehs
{louiensuRl 3P0 3a0s
fiomsse by
{ipussryede
(Nt
{isucqesadguoneaidyiabs
{isapoydanyials
{lepopppeqroibs
{huseawoljeiepeapels
(lsnmguopesnddyiseats
(s ypqaecuioniabs
(opiossagys
{03859+
{unssag e

o

00 - OIRpUIpRROU b
MOG T uwnpaaeTs g

W99 . BEss Wy

H9D . ngﬁnﬁa

1305 " phujones Wy
750 - a0
INTIPHS SO T iRy
NS P U

LUR0SY
<<y

L EpRRIGEL) vROUERRNE W

(300X SNYYL HLIY 3215 SOk 1ssues oprps Ly
30X T SNYHL YLLY IS ODley ateNsuRl apnoss uiy
0IONSSY 5S35 YLV 371 g0beys - prosissed g
{04350 5335 Uiy Ju5 ook - Gasn ug
[38vEYIva 5S35 4LV 7S 9obeus: suenep i

W65 seojesdnuogentde Wy

W09 seipvpdayel wg

R0 | SpOyRG0

WIST Aol EepRiEiel

oY | smsuaneaddyise i

50 | jprehgedun g

T I
<<J3ilEH

US 9,442,995 B2

1
LOG-BASE DATA REPLICATION FROM A
SOURCE DATABASE TO A TARGET
DATABASE

CLAIM OF PRIORITY

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/077,760, filed Mar. 31, 2011, entitled
“MYSQL DATABASE HETEROGENEOUS LOG BASED
REPLICATION”, now U.S. Pat. No. 8,510,270, issued on
Aug. 13, 2013, which claims the benefit of priority to U.S.
Provisional Patent Application No. 61/368,141, titled “HET-
EROGENEOUS LOG BASED REPLICATION FROM
DATABASES SUCH AS MYSQL DATABASES?, filed Jul.
27, 2010; which application is herein incorporated by ref-
erence.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF INVENTION

The present invention is generally related to transferring
data between different types of systems, and is particularly
related to a system and method that uses log based replica-
tion to transfer data between a MYSQL database or system,
and another type of database or system.

BACKGROUND

Database products such as the MySQL open source data-
base are used by increasing numbers of organizations world-
wide. With an estimated fifty thousand downloads per day,
the MySQL database is a popular choice for database
developers, administrators (DBAs), and IT managers who
want a high-performance database that is reliable, afford-
able, and easy to use. For some organizations, such data-
bases can become major production environments, and are
used to run applications that are core to business operations.
As their business grows, so does the need for complex data
management. Many of these organizations would like to
migrate data from, e.g. their MySQL database, to other
commercial databases such as Oracle/DB2/SqlServer, for
scalability reasons.

In addition to data migrations, some organizations who
use MySQL as their original database may also want to
integrate their data with other operational systems and
databases. An example may be integration with real time
data warehousing systems or other financial applications that
runs on different database systems. Such organizations often
require a solution that provides heterogeneous replication
with low latency for zero downtime migrations.

It is also sometimes the case that an organization would
prefer not to burden a production server for frequent report-
ing queries, since a great number of read-only queries for
reporting might slow down the performance of production
server. Some organizations may prefer to offload the report-
related query processing to another, perhaps lesser-perform-
ing, non-production database. For example, some organiza-
tions may want to use a first type of database server as their

10

15

20

25

30

35

40

45

50

55

60

65

2

reporting server, with, e.g. MySQL running either in Linux
or Windows OS; and a second type of database server, e.g.
Oracle running as a high-performance production server.

To enable integration of data persisted in a MySQL
database with other non-MySQL systems, custom programs
or software components such as ETL/EAI/EII (via a gate-
way or additional products) can be used. A problem with
these technologies is that they are inefficient at processing
non-bulk data (ETL), require application modification to
publish the data from the application (EAI), or require
application access to the MySQL system and the non-
MySQL systems and integrate the data as needed. At high
volumes, it is computationally taxing to run ETL continu-
ously to integrate the changed data, EAI integration requires
modification/access to the application thereby affecting
application response times, and EII is slow since it involves
access to multiple systems over different (remote) networks.

Accordingly, to date there is no log-based change data
capture (CDC) program to perform logical replication of,
e.g. MySQL transactional data from a MySQL database to a
non-MySQL database, other than periodic (nightly) ETL,
EAL or EIl ways of dealing with such integration/synchro-
nization. These are the general areas that embodiments of
the invention are intended to address.

SUMMARY

Described herein is a system and method for transferring
data between different types of systems, and in particular
uses log-based replication to transfer data between, e.g. a
MySQL database or system, and another type of database or
system. In accordance with an embodiment, the system can
be used to perform a one-time or initial copy of the MySQL
data from a source database system to a target database
system, and/or to replicate the on-going transactions cap-
tured from a MySQL database’s binary log into one or
additional non-MySQL database(s) on a continuous basis,
such that the two systems are synchronized for transactions
of interest. In accordance with an embodiment, full or partial
data changes can be extracted from the MySQL binary log,
optionally transformed, skipped or augmented, output or
written to a file (which in accordance with an embodiment
can be implemented as a trail file, or an Oracle GoldenGate
trail file), and then applied at any of one or more target
systems (e.g. another MySQL database, or a non-MySQL
database), thereby synchronizing the source and target sys-
tems.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is an illustration of the overall architecture of a
system for heterogeneous log based replication, in accor-
dance with an embodiment.

FIG. 2 is an illustration of the use of a log index file to
determine a current binary log file, in accordance with an
embodiment.

FIG. 3 is a flowchart of a process for heterogeneous log
based replication, in accordance with an embodiment.

FIG. 4 is an illustration of the use of log rotation, in
accordance with an embodiment.

FIG. 5 illustrates the event order in a MySQL binary log,
in accordance with an embodiment.

FIG. 6 illustrates an example of the event header struc-
ture, in accordance with an embodiment.

FIG. 7 illustrates an example of the field metadata, in
accordance with an embodiment.

US 9,442,995 B2

3

FIG. 8 illustrates an example of the table map event
structure, in accordance with an embodiment.

FIG. 9 illustrates an example of a write rows event
structure, in accordance with an embodiment.

FIG. 10 illustrates an example of an update rows event
structure, in accordance with an embodiment.

FIG. 11 illustrates an example of an event order, in
accordance with an embodiment.

FIG. 12 illustrates another example of an event order, in
accordance with an embodiment.

FIGS. 13A-13C illustrate an example of a class diagram
for the VAM binary log reader, in accordance with an
embodiment.

FIGS. 14A-14C illustrate an example of shows a class
diagram for the VAM binary log processor, in accordance
with an embodiment.

DETAILED DESCRIPTION

Described herein is a system and method for transferring
data between different types of systems, and in particular
uses log-based replication to transfer data between, e.g. a
MySQL database or system, and another type of database or
system. In accordance with an embodiment, the system can
be used to perform a one-time or initial copy of the MySQL
data from a source database system to a target database
system, and/or to replicate the on-going transactions cap-
tured from a MySQL database’s binary log into one or
additional non-MySQL database(s) on a continuous basis,
such that the two systems are synchronized for transactions
of interest. In accordance with an embodiment, full or partial
data changes can be extracted from the MySQL binary log,
optionally transformed, skipped or augmented, output or
written to a file (which in accordance with an embodiment
can be implemented as a trail file, or an Oracle GoldenGate
trail file), and then applied at any of one or more target
systems (e.g. another MySQL database, or a non-MySQL
database), thereby synchronizing the source and target sys-
tems. Advantages of various embodiments of the invention
include that:

1. The log-based replication allows for very low latency
for transactional replication between the MySQL and the
non-MySQL database systems. The general expectation
since the time the transaction committed into the MySQL
system and the replication to the non-MySQL system is a
few seconds or less.

2. The amount of overhead on the MySQL system com-
pared to prior methods is significantly lower, since changes
are captured from the log and not the data pages in the
MySQL system. The number of bytes transferred over the
network is also significantly lower.

3. Application tables are not queried via SQL or another
programming language embedding SQL (or SQL like lan-
guages), thereby making the replication non-invasive.

4. The system does not require the use of a third party
gateway product, and allows guaranteed delivery of trans-
actions in case of network, or system failures, and even for
most failures affecting the entire data site.

5. Operational reporting applications can be used to
obtain data from the non-MySQL database on a real-time
basis without accessing the MySQL database.

6. The system allows for near zero downtime migration of
applications running on a MySQL database to a non-MySQL
database, and also allows for transactions from a MySQL
database to be consumed by a database machine for near real
time (or active) data warehousing.

10

15

20

25

30

35

40

45

50

55

60

65

4

7. The system enables log-based change data capture
(CDC), and allows MySQL-based organizations who may
seek to scale to another system, but cannot accept applica-
tion outages, to maintain their two systems in synchrony,
conduct thorough testing, and then eventually migrate from
their MySQL system to the other system, without incurring
downtime. Currently, real-time operations from MySQL
databases are usually not integrated with the enterprise data
warehouse on a real-time basis. In accordance with an
embodiment, the method provides a way for enterprises to
obtain data from MySQL systems.

In accordance with an embodiment, the system uses
MySQL’s binary log feature to capture data. The MySQL
binary log contains statements data that modifies data in, e.g.
DML operations. Statements are stored in the form of
“events”, which describe modifications to the data. In accor-
dance with an embodiment, the binary log serves two
important purposes: (1) replication, in which the binary log
is used on master replication servers as a record of the
statements to be sent to slave servers. The master server
sends the events contained in its binary log to its slaves,
which execute those events to make the same data changes
that were made on the master; and (2) data recovery, in
which certain data recovery operations require use of the
binary log. After a backup file has been restored, the events
in the binary log that were recorded after the backup was
made are re-executed. These events bring databases up to
date from the point of the backup.

Enabling the binary log to store transaction data is not set
by default upon installation of MySQL. In accordance with
an embodiment, the parameter ‘log-bin’ can be used to
enable the binary logging. This parameter is specified in the
MySQL initialization file (which is my.ini for the Windows
platform; and my.conf in other platforms). In previous
releases of MySQL, the binary log contained statement level
information, i.e. it logged full DDL and DML statements. In
order to have data available in universal data formats to
support heterogeneity, it is difficult to build a log-based
capture based on pure text SQL statements. Later versions of
MySQL introduce binary logging support, which can be
used to alleviate the above issues. MySQL version 5.1 also
introduces new internal C++ classes to provide access to the
binary data.

In accordance with an embodiment, the MySQL binary
logs are created and numbered sequentially, as opposed to
the circular logging style found in other database such as
Ingress and Sybase. MySQL does not archive the old log
files automatically, so care must be taken by the adminis-
trator to keep/backup their older log files.

In accordance with an embodiment, updates to non-
transactional tables are stored in the binary log immediately
after execution. Within an uncommitted transaction, all
updates (UPDATE, DELETE, INSERT) that change trans-
actional tables, such as InnoDB tables are cached until a
COMMIT statement is received by the server. At that point,
a server daemon (mysqld) writes the entire transaction to the
binary log. The server daemon does not write transaction
data if a ROLLBACK statement is issued. With respect to
the binary log, the rollback operation is a no-op, non-
recorded operation.

FIG. 1 is an illustration of the overall architecture of a
system for heterogeneous log based replication, in accor-
dance with an embodiment. As shown in FIG. 1, the archi-
tecture 102 comprises a MySQL or similar database 104,
which is configured to log data in a current binary log file
106 (or a plurality 108 of binary log files), using the
configuration settings and parameters described above.

US 9,442,995 B2

5

In accordance with an embodiment, the system can
optionally comprise one or more MySQL Libraries 110, to
provide file reader, file CACHE, and data conversion
classes. In accordance with other embodiments, this particu-
lar component is not needed.

A Vendor Access Module (VAM) plug-in or application
program interface (API) 111, or similar component, is used
to provide access to the binary log files by a data capture and
replication system or product, such as Oracle GoldenGate,
or a similar replication product. In accordance with an
embodiment, the VAM includes a plurality of MySQL VAM
event classes 112, which can be used to provide processing
of events from the MySQL binary log, such as opening a
current binary log, reading the events, converting them into
VAM records, handling log rotation etc; a plurality of
MySQL VAM binary log classes 114, which can be used to
wrap around the MySQL Libraries; and a plurality of VAM
reader and processor classes 116, which can be used to read
and process records from binlog classes and put them into a
record queue. In accordance with an embodiment, some or
all of these classes can have their own dedicated thread and
not block by extract call. In accordance with other embodi-
ment, while the description above illustrates the use of a
MySQL environment, and a MySQL VAM, it will be evident
that other types of VAM can be implemented with other
types of database or system.

In accordance with an embodiment, a record queue 118 is
provided to hold records for the subsequent consumption by
a VAMRead () call. A plurality of VAM record classes 120
can be used to read data from the record queue and send the
data to extract using the VAM API. An extract process 122,
such as Oracle GoldenGate or a similar replication process,
is compiled to capture data from the VAM API, and write the
data to a trail 124, or a trail file, such as a GoldenGate trail
file, for communication to a target system 126 and/or target
database 128.

In accordance with an embodiment, MySQL stores data
inside the binary logs as event entries, supports various
events based on the nature of SQL statements and operation,
and provides C++ classes to read event data. In accordance
with an embodiment, the VAM is generally configured to
recognize a subset of these binary log events. For example,
the VAM can be configured to recognize those binary log
events that represent transactions, DML statement data, log
rotation etc. Table 1 shows a list of MySQL events that a
MySQL VAM can be configured to recognize from the
binary log, in accordance with an embodiment. It will be
evident that in accordance with other embodiments, other
types of events may be recognized.

TABLE 1
Event Name Description C++ Class
Query Event Represents SQL query. CQueryEvent
BEGIN, ROLLBACK
transactions and TRUNCATE
statement are represented by
this event.
XID Event Represents COMMIT CXidEvent
transactions.
Table Map Contains database name, CTableMapEvent
Event table names and column
metadata information.
Write Rows Contains list of rows inserted CRowsLogEvent
Event as part of INSERT operation.
Update Rows Contains list of rows updated CRowsLogEvent
Event as part of UPDATE operation.

Contains both before image as
well as after image data.

10

20

25

30

35

40

45

50

55

60

65

6
TABLE 1-continued

Event Name Description C++ Class

Delete Rows
Event
Rotate Event

Contains list of rows deleted CRowsLogEvent
as part of DELETE operation.

Represents the occurrence of CRotateEvent
log rotation. Contains new log

file name.

Stop Event Represents the occurrence of CStopEvent
server shutdown.
Format Describe binary log status CFormatDecriptionEvent
Description such as active, header
Event structure, etc.

In accordance with an embodiment, the VAM implemen-
tation can be written using C++, and implementation of the
VAM module can be split into two major parts: a first part
that reads the binary log events using internally developed
event C++ classes, processes them in to data records, makes
the records in readymade format (ready to send) and stores
it into a limited size queue; and a second part that fetches the
record from the queue and sends it to the API whenever it
has received a request from the API.

Log Index File

FIG. 2 is an illustration of the use of a log index file to
determine a current binary log file. In accordance with an
embodiment, MySQL uses a log index file to maintain a list
identifying the current binary log file, as well as older log
files. This log index file is located in the same directory
location as binary log. The system can read from the
configuration file to determine the log file format, e.g.
whether it is ROW, STATEMENT, or MIXED format, and
abend if it is not ROW. During initialization, the VAM needs
to obtain the name of the active binary log file. As shown in
FIG. 2, in accordance with an embodiment 132, the MySQL
database 104 can write data changes to a current binary log
file 106 (or a plurality 108 of binary log files), using the
configuration settings and parameters described above. To
determine the active binary log, the VAM 111 obtains the
MySQL installation home either from an environment vari-
able or supplied VAM parameter; reads the MySQL initial-
ization file (i.e. the my.ini in the Windows platform, or the
my.conf file in other platforms); obtains the value of ‘log-
bin’ parameter to obtain the log directory location as well as
the log index file name; opens the log index file 140 and
reads the content 142. From this content, the VAM can
determined the last log file in the list, and uses this infor-
mation to open 144 the particular log file, and check if the
log file is still in use by the server (e.g., by checking Format
description event’s flag value to LOG_EVENT_BIN-
LOG_IN_USE_F). If yes, then the MySQL server is using
this log file currently for writing, and VAM will treat this log
file as the active log file.

FIG. 3 is a flowchart of a process for heterogeneous log
based replication, in accordance with an embodiment. As
shown in FIG. 3, in step 160, the source system (e.g. MySQL
database) is configured to write transaction data to a binary
log. In step 162, during runtime, one or more binary logs are
created and transaction or changed data is stored therein as
event entries corresponding to, e.g. SQL or other database
statements. In step 164, the VAM (in the case of a MYSQL
database a MYSQL VAM) reads the binary log events, and
processes them into a queue of data records. In step 166,
when a request for transaction data is received, the VAM
fetches the data record from the queue and send it to the
VAM APL In step 168, an extract process (e.g. Oracle
GoldenGate) read from the API and creates a trail informa-
tion or a trail file (e.g. an Oracle GoldenGate Trail File),

US 9,442,995 B2

7

reflecting the transaction or changed data. In step 170, the
trail information or trail file is communicated or “pumped’
to one or more target systems (e.g. a target database), for use
in replicating transaction at those target systems (again
using, e.g. Oracle GoldenGate or another product).
Log Rotation

In accordance with an embodiment, a particular type of
event which can be associated with the binary log is the
RotateEvent, which is logged in the binary log indicating
possible log rotation, i.e. whenever the MySQL server closes
the current binary log and opens the new one. Possible
reasons for log rotations include, e.g. if the size of the log file
exceeds a ‘max_binlog size’ parameter, or if an explicit
‘flush logs’ command has been issued from the MySQL
command console. In these instances, MySQL creates a
Rotate event in the current binary log, closes the current
binary log, and opens a new binary log for further process-
ing. The Rotate event indicates the new log file to be created.
In accordance with an embodiment, the VAM can use this
value to close the existing binary log file, open the new
binary log file, and continue its reading.

In accordance with an embodiment, a Rotate event is
represented by a CRotateEvent C++ class, defined as:

class CRotateEvent: public CLogEvent

public:
const char* m_newLogFile; /* name of the new log file name */
uint m_newLogRFileLen;

In accordance with an embodiment, the following sce-
narios cause MySQL’s log rotation (i.e. closing an existing
active log file, and opening a new log file):

1. When the active log file size exceeds the value of
‘max_binlog_size’ (as specified in either the my.ini or
my.conf file). In this scenario:

a. MySQL logs a ‘Rotate Event’ in the active binary log.
The Rotate Event data section contains the location and
name of the new active binary log file.

b. MySQL closes the active binary log and resets the
Format description event flag to NULL.(this flag was
set previously with LOG_EVENT_BINLOG_IN_
USE_F value)

c. MySQL creates a new binary log and sets the Format
description event flag to LOG_EVENT_BINLOG_IN_
USE_F value.

2. When an explicit ‘flush logs’ command is issued in the

MySQL SQL prompt. In this scenario:

a. MySQL logs a ‘Rotate Event’ in the active binary log.
The Rotate Event data section contains the location and
name of the new active binary log file.

b. MySQL closes the active binary log and resets the
Format description event flag to NULL. (This flag was
set previously with LOG_EVENT_BINLOG_IN_
USE_F value)

c. MySQL creates a new binary log and sets the Format
description event flag to LOG_EVENT_BINLOG_IN_
USE_F value.

3. During server shutdown. In this scenario:

a. MySQL logs a ‘Stop Event’ in the active binary log.

b. MySQL closes the binary log, and also resets the format
description event’s flag to NULL value. (This flag was
set previously with LOG_EVENT_BINLOG_IN_
USE_F value).

5

20

25

30

40

45

8

4. During the server startup. In this scenario:

a. MySQL creates a new binary log, and sets the Format
description event flag to LOG_EVENT_BINLOG_IN_
USE_F value.

In accordance with an embodiment, during the above-
mentioned scenarios 1 and 2, the VAM uses the Rotate Event
to identify the occurrence of log rotation, and uses the Rotate
Event’s data to get the next binary log name. The VAM then
opens the next binary log and continues its binary log
reading. During the above-mentioned scenarios 3 and 4,
when the VAM encounters the Stop Event, it closes the
binary log that it uses, and checks the log index file for the
presence of next binary log. If the VAM finds a next binary
log in the index file, it opens the binary log and continuous
its reading. If the VAM could not find any new log file name
in the index file (e.g. the server is still in the shutdown mode,
or never started after the shutdown), the VAM informs the
extract to abend.

During a server crash, there is a small chance that the flag
of the Format description event is not going to be reset by
the server during the server restart, or that the MySQL server
neither logs the Rotate Event nor logs the Stop Event in the
active binary log file. During the subsequent startup, the
server creates new binary log file without resetting flag in the
previous binary log. In accordance with an embodiment, in
this situation, two binary logs would have LOG_EVENT_
BINLOG_IN_USE_F status flag set. The VAM might
encounter this scenario under following conditions: (1) The
VAM is currently processing active binary log. Server crash
happens at the time of reading. In this instance it is advisable
to stop the extract, do the crash recovery and restart the
VAM after the server startup; and (2) The VAM is positioned
to read an older log file. While reading from one file to
another file (i.e. log rotation), it encounters a log file flag
with the value of LOG_EVENT_BINLOG_IN_USE_F.
Also note that this log file is not the latest log file (i.e. not
an active binary log). When EOF is occurred, MySQL VAM
could check the log index file for the existence of next log
file. In this instance, the VAM assumes that server crash was
happened previously and close the exiting log file and open
the next log file and do the continues log reading.

FIG. 4 is an illustration of the use 182 of log rotation, in
accordance with an embodiment. As shown in FIG. 4, in step
184 the VAM parses the log index file to a list of binary log
files. In step 186, the sequence ID is read to get the logfile
name and position. In step 188, the log file is opened. In step
190, the file is checked for any EOF, and in step 198, if no
EOF is reached, then the events are sequentially read from
the log file. In steps 200 through 204, the VAM determines
events such as query events, rows events, rotate events,
and/or stop events. In step 206, the VAM processes an event
and moves to a next event. In step 208, the next log file can
be obtained from the Rotate event information.

VAM Implementation

As described above, in accordance with an embodiment,
the system and method enables the use of log-based repli-
cation to transfer data between, e.g. a MySQL database or
system and another type of database or system; or a database
product such as MySQL and a data replication product such
as Oracle GoldenGate. The following sections describe a
particular implementation of such an embodiment and cor-
responding Vendor Access Module (VAM) or application
program interface (API).

Binary Log Support

As described above, in accordance with an embodiment,
the VAM (MySQL VAM) uses a MySQL binary log to
capture data. The MySQL binary log contains a statements

US 9,442,995 B2

9

data that modifies data such as DML operations. Statements
are stored in the form of “events” that describe the modifi-
cations.

The binary log serves two important purposes: Replica-
tion, in which the binary log is used on master replication
servers as a record of the statements to be sent to slave
servers—the master server sends the events contained in its
binary log to its slaves, which execute those events to make
the same data changes that were made on the master; and
Data Recovery, in which certain data recovery operations
require use of the binary log.

After a backup file has been restored, the events in the
binary log that were recorded after the backup was made are
re-executed. These events bring the databases up to date
from the point of the backup. For a full backup, a user (e.g.
a customer) can use a ‘MySQLDump’ utility, and thereafter
use binary log for incremental backup.

Binary Log Configuration

In accordance with an embodiment, enabling the binary
log to store transaction data is not set by default with the
installation of MySQL. Instead, the parameter log-bin’
should be used to enable the binary logging. This parameter
is specified in the initialization file my.ini for windows
platform or my.conf in other platforms.

Prior to the MySQL 5.1 release, the binary log contained
statement level information, i.e. it logged full DDL and
DML statements. In order to have data available in a
universal data format to support heterogeneity, it is difficult
to build a log based capture based on pure text SQL
statements. However, MySQL 5.1 release introduces binary
logging support that alleviates the above issues. Also,
MySQL provides internal C++ classes to access this binary
data.

In accordance with an embodiment, the following steps
are necessary to configure MySQL server to enable binary
logging: Open MySQL server configuration file (my.ini for
windows or my.conf in other platforms); Enable the binary
logging using ‘log-bin’ parameter—the value of this option
specifies the directory location for the log file. For example:

log-bin="C:/MySQL/MySQL Server 5.1/log/test.bin”

In the above example, the name of the log files are created
with ‘test.00001, test.00002 . . .’ etc. These files are stored
in “c:/MySQL/MySQL Server 5.1/log” directory. In the
configuration file, the logging format should be configured
as ‘ROW’ mode only. ‘MIXED’ mode is not supported. This
option enables the DML statements to log the data in the
binary format. This can be achieved using ‘binlog_format’
parameter. A ‘max_binlog_size’ option can be used to
specify the binary log file size (in bytes). The minimum
value should be 4096.

MySQL’s binary logs are created and numbered sequen-
tially, as opposed to a circular logging style found in other
vendors such as Ingress and Sybase. MySQL does not
archive old log files automatically, so care should be taken
by the end user/customer to keep/backup their older log files.
In accordance with an embodiment, the following process
creates a new binary log file and closes the existing log file:
Whenever server daemon, mysqld is started; Explicit flush
commands from MySQL command console program
(mysql) such as FLUSH LOGS or FLUSH MASTER—the
server also creates a new binary log file automatically when
the current log’s size reaches max_binlog_size parameter.

In accordance with an embodiment, MySQL maintains an
index file that contains the list of binary log files, including
actively used as well as older ones. This index file is present

5

10

15

20

25

30

35

40

45

50

55

60

10

in the same directory location as other binary logs. MySQL
binary log does not support turning off/on logging specific
tables/columns.

Transactions and Binary Logs

In accordance with an embodiment, updates to non-
transactional tables are stored in the binary log immediately
after execution. Within an uncommitted transaction, all
updates (UPDATE, DELETE, INSERT) that change trans-
actional tables such as InnoDB tables are cached until a
COMMIT statement is received by the server. MySQL
opens a temporary file to flush the cache in order to
accommodate more data from the update operation. At that
point, mysqld (server daemon) writes the entire transaction
to the binary log. The server daemon does not write trans-
action data if ROLLBACK statement is issued. As far as
binary log is concerned, the rollback operation is a no-op,
non-recorded operation.

When rolling back a transaction that is mixed with
updates to both transactional as well as non transactional
tables, the server daemon records explicit ROLLBACK
statements to the log. A SAVEPOINT statement is used to set
a named transaction savepoint with any name. The ROLL-
BACK TO SAVEPOINT statement is used to rollback the
transaction for the named savepoint. MySQL does not
support nested transactions or naming of a transaction. If a
new transaction is started, or server is closed without ending
the previous one with a COMMIT or ROLLBACK, MySQL
will automatically commit the previous transaction’s data to
disk before beginning a new transaction or before server
shutdown. MySQL does not split the transaction between
multiple binary files.

In accordance with an embodiment, it is possible to allow
the size of the binary log file to exceed the value specified
using max_binlog_size parameter, if the transaction data
size exceeds this parameter value. No operation updates
(updates results in ‘zero’ columns) are not written to binary
logs. This also applies for empty transactions. When a
trigger is used to update a column to itself MySQL logs the
result of the trigger updates rather than the result of the
statement updates. For example, with the following triggers,
an update of age to 20 causes MySQL to log the value of 25
(result of the trigger) rather than 20:

create table customers (age int, name varchar(20));
CREATE TRIGGER upd_check BEFORE UPDATE ON customers FOR
EACH ROW
BEGIN

IF NEW.age < 25 THEN

SET NEW.age = 25;

END IF;

END;//

Platform Support

In accordance with various embodiments, the system can
support Windows, Linux Operating system, HPUX, and
Solaris OS. In order for the MySQL VAM to capture the
binary log event, the following permissions need to be given
for the MySQL extract process (the following permissions
are applicable to non windows platforms): Read and Execute
permissions for the directory where the configuration file
(my.cnf) is located and for the directory where binary logs
are generated; Read permission for the configuration file
(my.cnf); Read, Write (used by MySQL daemon process);
Execute permission for the tmp directory (defined).
Version Support

MySQL supports binary logs from the release 3.x
onwards. Before Release 5.1, modifications to the database

US 9,442,995 B2

11

tables via DML operations were logged in the binary logs as
SQL statements (in text form). From Release 5.1 onwards,
MySQL binary logs stores DML operations as row data in
binary form. In accordance with an embodiment, it is easier
for the MySQL VAM to read this binary data and convert
them to e.g. a GoldenGate universal format, as opposed to
dealing with text based SQL statements.
DataType Support

Table 2 shows the data types supported In accordance
with an embodiment.

TABLE 2

Numeric Data types

TINY INT - -128 to 127 normal; 0 to 255 UNSIGNED

SMALL INT - -32768 to 32767 normal; 0 to 65535 UNSIGNED
MEDIUM INT - -8388608 to 8388607 normal; 0 to 16777215
UNSIGNED

INT - -2147483648 to 2147483647 normal; 0 to 4294967295 UNSIGNED
BIG INT - -9223372036854775808 to 9223372036854775807 normal;
0 to 18446744073709551615 UNSIGNED

FLOAT - Floating decimal point having precision from 0 to 23
DOUBLE - Floating decimal point having precision from 24 to 53
DECIMAL - Floating data type that stores exact data value having
maximum digit of 65.

Stored in Binary format.

String Data types

CHAR - A fixed section from 0 to 255 characters long.

VARCHAR - A string with a maximum length of 65535 characters
(character set is derived from character set defined at database level.
Table level and column level character set is not supported).
BINARY - A fixed section from 0 to 255 bytes long.

VARBINARY - Sequence of bytes with a maximum length of 65535.
LOB Data types

TINYBLOB, TINYTEXT - With maximum length of 255 bytes

BLOB, TEXT - With maximum length of 65535 bytes

MEDIUMBLOB, MEDIUMTEXT - With maximum length of 16777215
bytes

LONGBLOB, LONGTEXT - With maximum length of 4294967295 Bytes
Date and Time Data types

DATE - Stored in YYYY-MM-DD format.

TIME - Stored in HH:MM:SS format

YEAR - Stored in YY or YYYY format.

DATETIME - Stored in YYYY-MM-DD HH:MM:SS format
TIMESTAMP - Stored in YYYYMMDDHHMMSS format
Timestamp value is stored in binarylog as four bytes integer. For zero
timestamp scenario, this integer value is represented as zero value.
MySQL VAM have following options.

1) Send as juliantimestamp value to API (as zero value)

2) Or format this as *0000-00-00 00:00:00” text and send this as
ASCII value to API

Special Data types

ENUM -A string object with a value chosen from a list of allowed values
that are enumerated during column specification when the table is created.
SET - A string object that can have zero or more values, each of which
must be chosen from a list of allowed values specified when the table is
created.

BIT(M) - A bit-field type. M indicates the number of bits per value, from
1 to 64.

GEOMETRY - Not supported in the first release.

Storage Engine Support

In accordance with an embodiment, the MySQL VAM
supports the following storage engines: MyISAM—Non
transactional storage engine; and InnoDB—Transactional
storage engine.
Supported Database Operations

In accordance with an embodiment, the MySQL VAM can
capture the following database operations from the binary
log: Start Transaction; Commit Transaction; Rollback Trans-
action—MySQL does not send the transactions that are roll
backed to the binary logs, but MySQL logs the “transaction

10

15

20

25

30

40

45

50

55

60

12

rollback operation” if transaction involves tables of innoDB
and myISAM types participating in the same transaction;
Insert operation; Update operation; Delete operation; Trun-
cate operation.
Maximum Row Size and Columns Support

In accordance with an embodiment, the maximum data-
base row size for MySQL (currently 64 k) is supported by
all, e.g. GoldenGate applications. The maximum number of
columns (currently 3398) for a given MySQL table; maxi-
mum object name length for MySQL (schema.table); and
maximum object name length for MySQL (schema.table) is
supported. MySQL with innodb storage engine includes the
limitation that the number of columns should not exceed
1000.
Compressed Updates and Deletes Support

In accordance with an embodiment, the binary log stores
column values which are not part of a DML operation. To
minimize the data transfer between the MYSQL VAM and
capture module, Compressed Updates and Deletes are sup-
ported.
AUTO_INCREMENT Column

In accordance with an embodiment, the AUTO_INCRE-
MENT column attribute can be used to generate a unique
identity for new rows. Since this column values are system
generated in most of the cases, the following two require-
ments are supported: Propagation of AUTO_INCREMENT
column value to the target side—MySQL logs stores this
AUTO_INCREMENT column value in the binary log. So on
the apply side (i.e. target), replicat process will insert this
auto increment column value explicit insert operation—
MySQL supports forcing AUTO INCREMENT column to
specific value during insert operation; and Bi directional
support—During INSERT operation, AUTO_INCREMENT
column value gets inserted with next higher value.

MySQL supports two variables (configured via their ini-
tializationfile my.ini) ‘auto_increment_increment’ and
‘auto_increment_offset’ to resolve any bidirectional auto_
increment column issues. These server side variables can be
set differently on the source as well as target side to resolve
conflicts for bi-directional setups.
Bi-Directional Data Replication Support

In accordance with an embodiment, in order to support
bi-directional loop detection, the MYSQL VAM module
filters the records based on user id, transaction id. The
MySQL binary log does not store these values in their
events. Bi-directional loop detection should be supported via
trace table or checkpoint table on the target side (configured
using FILTERTABLE option). MySQL bidirectional con-
figuration requires the use of a Replicat checkpoint table to
identify Replicat transactions for exclusion from capture.
Extract ignores transactions that end with an operation on
the checkpoint table. To support this functionality, TRAN-
LOGOPTIONS provides a new FILTERTABLE <table>
option that specifies the name of the checkpoint table. A
Replicat database user can turn off session level binary
logging using ‘sql_log_bin’ variable. So on the apply side;
a replicat user should set this value to 0 to turn off the binary
logging.
Positioning by LSN and Timestamp

In accordance with an embodiment, the MySQL VAM
supports positioning by Timestamp as well as by LSN.
Timestamp position is set using ADD/ALTER extract com-
mand, for example:

ADD/ALTER EXTRACT extract_name,MYSQL VAM,

begin timestamp_value

US 9,442,995 B2

13

wherein valid Timestamp values are:

NOW (or now)—Extract takes current timestamp value
when it was added or altered.

MySQLMYSQL VAM reads the transaction records
whose timestamp value is equal or greater than this
timestamp value.

Past timestamp value—MySQL VAM searches the log file
and reads the transaction record whose timestamp value
is equal or greater than this timestamp value.

Future timestamp value—MySQL VAM waits and read
the transaction records whose timestamp value is equal
or greater than this timestamp value.

Position by LSN value is set using ADD/ALTER extract

command, for example:

ADD/ALTER EXTRACT extract_name,MYSQL VAM,
lognum log_num, logpos log_pos

where log_num—I.og file number. For example, if the log
file name is test.000034, then this value would be 34.
MySQLMYSQL VAM searches this log file and open it for
further reading; and log_pos—Offset value within the log
file. Transactional record available after this position will be
read by MySQL VAM.

Archive Log Support

As described above, in accordance with an embodiment,
MySQL’s binary logs are created and numbered sequen-
tially, as opposed to the circular logging style found in other
vendors such as Ingress and Sybase. MySQL does not
archive their old log files automatically. Log files are kept in
a log directory specified in the initialization file. As such,
care should be taken by the customer to keep/backup their
older log files. In accordance with an embodiment, support
of positioning as well as reading older binary log file using
MySQL VAM can be provided. The MySQL VAM will
return an error or abend the operation if'it is asked to position
the older log file which was moved to other location by
administrator or other backup tools.

DDL Replication

In accordance with an embodiment, the binary logs store
DDL statements as text based SQL statements, and MySQL
VAM supports this feature.

FetchCols and FetchModCols Support

In accordance with an embodiment, FETCHCOLS and
FETCHCOLSEXCEPT can be used to fetch column values
from the database when the values are not present in the
transaction log record. This option can be used if the
database uses compressed updates (where column values are
not logged unless they changed). FETCHCOLS and
FETCHCOLSEXCEPT ensure that column values required
for FILTER operations are available:

FETCHCOLS fetches the specified column(s).

FETCHCOLSEXCEPT {fetches all columns except those
specified. For tables with numerous columns, FETCH-
COLSEXCEPT may be more efficient than listing each
column with FETCHCOLS.

FETCHMODCOLS and FETCHMODCOLSEXCEPT
can be used to force column values to be fetched from the
database even if the columns are present in the transaction
log. Values that can be present in the transaction log are
those of columns that were either modified or included in
supplemental logging:

FETCHMODCOLS fetches the specified column(s).

FETCHMODCOLSEXCEPT fetches all columns present
in the transaction log, except those specified. For tables
with numerous columns, FETCHMODCOL.

In accordance with an embodiment this feature is supported
in the capture side.

10

15

20

25

30

35

40

45

50

55

60

65

14

Initial Load Support

In accordance with an embodiment, the MYSQL VAM
includes initial load support. With the popularity of open
source database and open source operating system, more and
more customers are starting to use MySQL as part of their
enterprise. As their business grows, organizations may like
to move to Oracle/DB2/SQLServer from MySQL. to manage
their complex data management, usually by following steps:

Step 1, migrate existing MySQL’s data to customer’s
database of choice. Capture side Initial Load support can be
used to solve this problem;

Step 2, after the successful migration, enable real time
replication (or change data capture). The MySQL VAM can
be used to solve this problem.

The following initial load methods are supported: Load-
ing Data with Replicat-Extract process extracts data directly
from the table. This method is slower in nature since one
record is applied at a time in the apply side; Loading data
with Bulk-load utility—Extract process output records in
ASCII format which can be consumed later by SQL-
LOADER or BCP; and Loading data with a GoldenGate
direct load—Extract process extracts data directly from the
table and invoke replicat process. Loading data directly to
SQL*Loader.

Miscellaneous Requirements

In accordance with an embodiment, the MySQL VAM
module does not change the binary log content i.e. by adding
additional truncation points (in Sybase case). So the support
of' more than one extract process reading on the same binary
log is possible. In accordance with an embodiment, MySQL
VAM should coexist with MySQL database configured with
replication option. Care should be taken to avoid adding new
parameters in the extract or using MySQL specific parameter
files.

Case Sensitivity

In accordance with an embodiment, MySQL maps the
database name as directory name, and table name as file
name (.frm file holds the metadata about the table). Case
sensitive table name depends upon the underlying operating
system in which MySQL runs. MySQL. does not distinguish
table names with mixed cases in the windows platform and
case sensitive in most varieties of UNIX platform.
Character Set Support

In accordance with an embodiment, MySQL supports
UNICODE character set for CHAR, VARCHAR, TEXT and
ENUM column types. MySQL supports both UTF8 as well
UTF16 (ucs2) encoding for its string columns. For UNI-
CODE character set, the data needs to be stored in the trail
file as UTF16 value. In case of UTF8 encoding for string
columns, the MYSQL VAM module, initial load module as
well as apply side module uses internal conversion libraries
to convert its data to (or from) UTF16 values. MySQL
supports NCHAR, NVARCHAR column types. They are
internally mapped as column with UTF8 character set.
MySQL capture supports UTF8 and UCS2 character set in
the very first release. In accordance with an embodiment, the
MySQL capture and apply module is certified with UNI-
CODE character set.

Additional Configuration Requirements

In accordance with an embodiment, the MySQL VAM
requires the environment variable ‘MYSQL_HOME’ to be
setup correctly. This variable must point to the installation
location of the MySQL database. MySQLMYSQL VAM
uses this variable to lookup the MYSQL configuration file
(my.ini in windows platform and my.conf in the non win-
dows platform). Also, the following parameters must be set
inside the MySQL configuration file (my.ini or my.conf):

US 9,442,995 B2

15

Enable the binary logging using ‘log-bin’ parameter—value
of'this option specifies the directory location for the log file;
Specity the logging format using ‘binlog format’ param-
eter—this should be configured as ‘ROW’ mode only.
‘MIXED’ and ‘STATEMENT” mode are not supported. For
example:

[mysqld]
log-bin="C:/MySQL/MySQL Server 5.1/log/test.bin”
binlog_format = ROW

In this example, the name of the log files are created with
‘test.00001, test.00002° etc. These files are stored in “c:/
MySQL/MySQL Server 5.1/log” directory.

Direct Use of MySQL C++ Classes

MySQL does not have a well defined log API available to
the outside world, but it has a well defined file access
IO_CACHE class as well as event classes (exposed in C++),
that mirror the content of the binary log. MYSQL has
separated reading as well as processing of log events. The
internal IO_CACHE classes read binary logs data in a chunk
on demand basis. (of 64 k size minimum, to avoid disk 10
overhead). These classes provide APIs to read from this
block. On the processing side, MYSQL has event classes
that can be used to cast this data to event specific C++ class.
These publically available MySQL classes have following
drawbacks: IO0_CACHE classes reads binary log event data
(if size is more than 64 k) in one single shot into the memory.
For events containing larger data (for example, LOB data of
size 2 GB), this could be an issue; IO_CACHE classes
implement pthread specific functions on its own. This cre-
ates set of linker errors (redefinition) while MySQL VAM
linking with extract module.

In accordance with an embodiment, the MySQL VAM can
reimplement both IO_CACHE class as well as event pro-
cessor classes. This gives complete control for MySQL
VAM accessing binary log. Also this alleviates the problem
of linker errors, larger LOB data fetching, and dependency
on MySQL specific source code files or header files.

In accordance with an embodiment, MySQL VAM can
reimplement C++ classes for processing events and use the
I0_CACHE classes for the buffered 1O read. This approach
reduces the dependency on MySQL source code to be in, e.g.
GoldenGate build environment. Also this approach gives
complete control of how MySQL VAM processes the event
data. Frequently used event instances can be recycled as
well.

In accordance with an embodiment, MySQL VAM can
use MySQL specific event classes and IO_CACHE classes
to access binary logs. MySQL VAM classes needs to inherit
from the event classes to provide needed features specific to
MySQL VAM.

Signed or Unsigned integer

MySQL supports integer column defined either as signed
or unsigned (default is signed). For example, two bytes
signed integer column could support values from -32 k to
+32 k and the unsigned one supports 0 to +64 k. The binary
log does not return metadata regarding sign of a numeric
column, i.e. if it column supports signed or unsigned mode.
There are two possible design approaches: Return always a
signed value-on the target side, replicat will do the conver-
sion based on the column type; or Get metadata of the
MySQL column from extract and return the correct value to
extract. In accordance with an embodiment, MySQL VAM
returns numeric values as signed values to the MYSQL
VAM APL

10

15

20

25

30

35

40

45

50

55

60

65

16

Positioning by Sequence Id

In accordance with an embodiment, inside the binary log,
MySQL events have a position value in their header section.
The lifecycle of this value is specific to a binary file, i.e. the
position value can be unique within a given binary file but
not outside of the binary file. Two different events in two
different binary file might have same value. In order to
identify a transaction record by position uniquely, MySQL
VAM combines this event position value with log file name.
For example, ‘binlog.00054:123°, where ‘binlog.00054" is
name of the binary log and ‘123’ is position of transaction
record. MySQL VAM sends this value as ASCII string
attributes using GG_ATTR_DS_SEQID.

In accordance with an embodiment, during the restart
scenario, extract sends this last received Sequence Id value
to MySQL VAM during MYSQL VAMInitialize() call.
MySQL VAM uses this value to set the correct read position.
MySQL VAM parses this Sequence Id value from extract,
and get the log file name as well as event position. Then it
opens the corresponding log file and start scanning for
events. If the event’s position matches with the one specified
in the sequence 1d, MySQL VAM sets this position as current
read position and starts reading the binary log content from
this position.

Transaction ID

For events representing DML operation, MySQL does not
have transaction id as part of the event data. As such,
MySQL VAM needs a way to send this transaction id
(unique) to MYSQL VAM APIL. In accordance with an
embodiment, to solve this problem, the MYSQL VAM API
treats ‘Sequence Id’ of the ‘START Transaction’ statement
as transaction id. Since this ‘Sequence Id’ is the combination
of logfile name+event offset within the file, uniqueness of
transaction id is guaranteed across multiple log files. Also
MySQL VAM will maintain this pseudo transaction id
internally and send this value to MYSQL VAM API for the
all the DML statements with in particular transaction.
MySQL VAM clears this value once it encounters ‘Commit’
or ‘Rollback’ statement.

Accessing LOB data

In the MySQL binary log, LOB column values are stored
inline with other non LOB column values. This is different
from other databases since the values are not stored inline as
well as accessed using locator or coupon where the data can
be fetched on demand. This is not the case for MySQL
database (with the storage engine MyISAM as well as
InnoDB). For reading LOB column value from the binary
log, MySQL internal IO_CACHE class fetches entire value
of this LOB column value from the log file to the memory.
i.e. memory is allocated completely in one shot for this LOB
column by this class.

In accordance with an embodiment, the MYSQL VAM
API provides specification outlines that LOB data of bigger
sizes should be sent to MYSQL VAM API in chunks. But in
MySQL case, the data is already fetched completely by
MySQL internal classes (i.e. memory is allocated com-
pletely by the IO_CACHE object), LOB data can be sent to
MYSQL VAM API in one call as well as multiple call in
chunk size of 32 k bytes. In accordance with an embodiment,
as described above, MySQL’s I0_CACHE class fetches
entire value of the lob data along with other row data in one
shot. This is problematic if the LOB size is of 2 GB. One
approach is to rewrite the implementation of IO_CACHE
class so that MYSQL VAM can read the data from file in
chunks. Existing file manager libraries from GoldenGate (if
any) can be used. In accordance with an embodiment, the

US 9,442,995 B2

17
system uses [O_CACHE class, and sends the log data to
MYSQL VAM API in chunks.

In accordance with an embodiment, the MySQL VAM
implementation can make use of IO_CACHE class for
reading binary log file. Except for LOB data limitation,
IO_CACHE class handles reading other MySQL data very
well. Also it is practically rare (or not often) to process the
LOB data of 2 GB in size. Irrespective of internal storage
mechanism of LOB column value, MYSQL VAM should
return the LOB data in chunks to the MYSQL VAM API so
that MYSQL VAM API can be paged out if necessary.
OG Processing and MYSQL VAM API Communication

In accordance with an embodiment, the MySQL VAM
implementation can be split into two parts: the first part
reads the LOG data from the binary log and prepares the
data, make the data ready for the MYSQL VAM API—this
will be executed in a separate thread; the second part sends
the readymade data (record) to the API as per request. The
major drawback in the traditional design is everything (the
complete process) starts happening only when the MYSQL
VAM API requests and obviously MySQL VAM module
requires some execution time to complete the process.
During this time the MYSQL VAM API is idle and which
will decrease the performance of MYSQL VAM. By split-
ting the design into two parts, this removes the idle time of
MYSQL VAM API. As the first part independently reads the
binary log, the system can prepare the data to send to API
and store it into limited size Queue. Then the second part
fetches the readymade record from Queue and sends it to the
MYSQL VAM API immediately as and when requests come
from MYSQL VAM API side.

Architectural Design

As described above, in accordance with an embodiment,
the overall architecture of the MySQL VAM module
includes:

MySQL Libraries—Libraries that provide file reader, file

CACHE, data conversion classes.

MySQL VAM Event classes—MySQL VAM’s in house
implementation of processing events from MySQL
binary log.

MySQL VAM Binary log classes—Class that wraps
around MySQL’s libraries, MySQL VAM events
classes. Open current binary log, read the events,
convert them in to MYSQL VAM records, handles log
rotation etc.

MYSQL VAM Reader, Processor class—Classes that read
and process record from binlog classes and put it into
record queue. These classes have its own dedicated
thread and not blocked by extract call.

Record Queue—Queue that holds records later for the
consumption by MYSQL VAMRead () call.

MYSQL VAM Record classes—Classes that read data
from Record queue and send it to extract using
MYSQL VAM APL

Extract process—a standard GoldenGate extract process
compiled to capture data from a MYSQL VAM APL

Binary Log Structure and Log Events

FIG. 5 illustrates the Event Order in a MySQL Binary Log
230 in accordance with an embodiment. In accordance with
an embodiment, MySQL stores the data inside the binary
logs as event entries. MySQL supports various events based
on the nature of SQL statements and operation. MySQL
provides C++ classes to read event data. In general, binary
log structure contains the following event entries:

1. Starts with a 4-byte magic number, which is defined as
constant BINLOG_MAGIC with value of
“xfe\x62\x69\x6€e”. This value can be ignored.

20

30

35

40

45

50

65

18

2. Next entry is Format description event. This event is
global across given binary log file. MySQL writes this event
only once per binary log. This event tracks if the current
binary log is in use or closed properly.

3. The rest of the entries followed by sequence of events
are represented in FIG. 5.

In accordance with an embodiment, the MySQL VAM is
interested in sub set of binary log events. For example the
MySQL VAM is interested in binary log events that repre-
sent transactions, DML statement data, log rotation etc.
Table 3 shows the list of MySQL events that MySQL VAM
is interested in, in accordance with an embodiment.

TABLE 3
Event Name Description C++ Class
Query Event Represents SQL query. CQueryEvent
BEGIN, ROLLBACK
transactions and TRUNCATE
statement are represented by
this event.
XID Event Represents COMMIT CXidEvent
transactions.
Table Map Contains database name, CTableMapEvent
Event table names and column
metadata information.
Write Rows Contains list of rows inserted CRowsLogEvent
Event as part of INSERT operation.
Update Rows Contains list of rows updated CRowsLogEvent
Event as part of UPDATE operation.
Contains both before image as
well as after image data.
Delete Rows Contains list of rows deleted CRowsLogEvent
Event as part of DELETE operation.
Rotate Event Represents the occurrence of CRotateEvent

log rotation. Contains new log
file name.

Stop Event Represents the occurrence of CStopEvent
server shutdown.
Format Describe binary log status CFormatDecriptionEvent
Description such as active, header
Event structure, etc.
Event Structure

FIG. 6 illustrates the Event Header structure 236 in
accordance with an embodiment. All the events have generic
header section followed by data section. Some events have
optional data header section. The event structure is generally
represented as

1. Event Header—Size of the structure is 19 bytes. This
section contains the following event specific data which are
generic across all the events.

4 bytes—Timestamp of the event. Number of seconds

since the start of the year 1970.

1 byte—The type code of the event. The interested values
and meaning of the type codes are: QUERY_
EVENT=2; STOP_EVENT=3; ROTATE_EVENT=4,
FORMAT_DESCRIPTION_EVENT=15; XID_E-
VENT=16; TABLE_MAP_EVENT=19; WRITE_
ROWS_EVENT=23; UPDATE_ROWS_EVENT=24,
DELETE_ROWS_EVENT=25.

4 byes—Server ID. Uniquely identifies the server among
its replication peers. MySQL VAM ignores this value.

4 bytes—The length of the whole event, including the
header, in bytes.

4 bytes—Offset of the event in the log in bytes. This value
is similar to LSN or sequence number.

2 bytes—Event flags. MySQL VAM ignores this value.
This event header is represented by CLogEvent C++ class.
All binary log related event specific C++ classes inherits
from this class. The structure of this class is represented as:

US 9,442,995 B2

19

class CLogEvent

/* time stamp of this event®/
/* event type*/
/* server id*/
/* size of the event data*/
/* offset of the event in the log*/
/* event flag */
/* buffer to hold event data */

time_t m_timestamp;
short m_typecode;
uint32 m_serverid;
ulong m_eventsize;
my_off_t m_logpos;
uintl6 m_flags;

char *m_tempbuf;

}

2. Data Header—Size of the structure is 8 bytes. Event
containing variable data (such as Table Map Event, Write
Rows Event etc.) contains this section. This section contains

6 bytes—contains table_id. This can be treated as table

version. MYSQL VAM uses this value to check if the
underlying table metadata is changed or not.

2 bytes—Data header flag. MySQL VAM ignores this

value.

3. Data section—Holds event specific data. For example
sequence of column values for Write rows event, column
metadata for Table map event. See next section for more
details.

Event Data Section

In accordance with an embodiment, the event data section
holds event specific data. The size of the data section is
dynamic i.e. values can be different and specific to event
types and holds variable list of data. The following section
explains structure of the event data section for the event
types that MySQL VAM is interested in.

Query Event

In accordance with an embodiment, this event represents
SQL query. This event is represented by MySQL internal
C++ class ‘CQueryEvent’. The data section of this event
contains database name, query string value and other infor-
mation. MYSQL VAM uses CQueryEvent to retrieve these
values using following member variables:

class CQueryEvent : public CLogEvent

/* SQL query string*/

/* database name*/

/* query string length*/
/* database name string length*/

const char *m_query;
const char *m_dbName;
uint32 m_querylen;
uint32 m_dblen;

}

MySQL’s ‘BEGIN Transaction” and ‘ROLLBACK
Transaction” and ‘Truncate’ statements are represented by
this CQueryEvent class. For these statements, Member
‘query’ contains value as “BEGIN” or “ROLLBACK” or
“TRUNCATE table_name”. Normal string comparison rou-
tine can be used to filter these statements from the log.
XID_Event

In accordance with an embodiment, this event represents
Commit of a transaction. This event is represented by
MySQL internal C++ class ‘CXidEvent’. Data section of
this event contains transaction ID of a two phase commit
transaction that MySQL VAM ignores (MySQL replication
also ignores this value). MySQL VAM can use this event
entry to assume that transaction is committed and free up
any transaction specific objects.

Table Map Event

In accordance with an embodiment, this event represents
the metadata of the table participating in the transaction
(through DML statements). This event precedes any event
that represents DML operation such as Write, Update and

10

20

30

40

45

50

55

60

65

20

Delete row events. For example, a simple insert operation
causes two entries in the binary log. First entry is a ‘Table
map event’ containing the table metadata and the next entry
is ‘Write rows event’ containing row data added as part of
the INSERT operation. Apart from generic header section,
this event contains additional data header section plus data
section. Data header (of 8 bytes) section contains the fol-
lowing data: table_id:6 bytes length-tracks the table meta-
data modification; and flags:MySQL VAM can ignore this
flag.

Most of the time table map event for a given table remains
unchanged if the underlying table structure remains the
same. Even though the binary log contains multiple entries
of same table map event, it is better to process them once and
reuse them later. This speeds up the performance of reading
binary log. It is better to use a hash table to store the instance
of' a Table_map_log_event log class and later retrieve them
using table name for further processing.

When a table structure is modified (using ‘alter table . . .’
statement), MySQL creates a new table id for the same table.
MySQL does not store history of table ids. In the case of
changing table metadata while reading binary log, MySQL
can handle in following way. 1) ABEND the process. 2)
MySQL VAM uses the altered (latest) table definition for
further processing. In accordance with an embodiment, the
MySQL VAM can check the existing table id for a given
table name, if it is different, then this could be assumed as
changes in table metadata and MYSQL VAM could signal
extract to abend.

The data section of table map event contains following
table metadata information:

1 byte - length of database name

1 bytes - database name + followed by null terminated char.

1 byte - length of table name

1 bytes - table name + followed by null terminated char.

1 bytes - number of columns. 1 byte if number of columns is less than or
equal to 255 else 2 bytes.

1 bytes - stores type of each column in the table, listed from left to
right. Each byte is mapped to MYSQL internal column type.

1 bytes - size of field metadata. See Field Metadata section (next
section) for more details

1 bytes - field metadata values. See Field Metadata section (next
section) for more details

1 bytes - null column bits, rounded up to nearest byte. For each column,
a bit indicating whether data in the column can be NULL or not. The
number of bytes needed for this

isint((column_count+7)/8). The flag for the first column from the left is
in the least-significant bit of the first byte, the second is in the second
least significant bit of the first byte, the ninth is in the least significant
bit of the second byte, and so on.

Field Metadata

FIG. 7 shows the Field Metadata 242 in accordance with
an embodiment. Field metadata usually represents additional
information pertaining to the size of the column metadata.
This can be treated as pack length i.e total number bytes
required to pack particular column values. These values are
later used for reading appropriate bytes to get actual values.
For column types of fixed length (such as integer, date etc),
this field metadata is usually zero. For example, for column
type of VARCHAR, this field metadata represents maximum
size of the VARCHAR column. Table 4 shows the content of
the field metadata section for different column types.

TABLE 4

Column Type Field Metadata

MYSQL_TYPE_VARCHAR 2 bytes. Holds maximum size of

VARCHAR column

US 9,442,995 B2

21
TABLE 4-continued

Column Type Field Metadata

MYSQL_TYPE_FLOAT 1 byte. Holds maximum size of (float)
value. MYSQL VAM ignores
this value.
MYSQL_TYPE_DOUBLE 1 byte. Holds maximum size of
(double) value. MYSQL VAM
ignores this value.
MYSQL_TYPE_DECIMAL 2 bytes. First byte represents precision
and the second byte represents scale.
MYSQL_TYPE_STRING 2 bytes. First byte represents sub types.
Sub types are MYSQL_TYPE_CHAR,
MYSQL_TYPE_ENUM and
MYSQL_TYPE_SET. Second byte
represents total bytes storage required.

MYSQL_TYPE_BIT 2 bytes. Holds maximum size of the
bit column

MYSQL_TYPE_BLOB 1 byte. Holds number of bytes needed
to represent the length of the blob.

MYSQL_TYPE_INT 0 byte.

MYSQL_TYPE_BIGINT
MYSQL_TYPE_DATE
MYSQL_TYPE_TIMESTAMP
MYSQL_TYPE_DATETIME

Assume that a table having a blob column of type
‘MEDIUM BLOB’. The maximum size of the blob column
could be 16777216 bytes (16 MB). The size requires usually
3 bytes. A simple insert operation is done on this table. This
insert operation creates both ‘Table Map Event’ as well as
‘Write Rows Event” in the binary log. The binary log stores
length of the BLOB column along with actual BLOB data in
the ‘Write Rows Event’ section. In order to retrieve this
BLOB data, MySQL VAM need to do following steps:

1. MySQL VAM needs to know the byte storage required
to calculate length of this BLOB column (in this example, it
is 3 bytes required to store length of 16777216). This value
is retrieved from ‘field metadata’ section of ‘Table Map
Event’.

2. Based on the above value, In order to find out actual
data length, MySQL VAM either read first one or two or
three or four bytes of the actual row data value from ‘Write
Rows Event’. In this case, MySQL VAM needs to read first
three bytes to get actual length value of the BLOB data.

3. MySQL VAM allocates enough memory based on the
actual length and copy the data from the binary log.

From ‘Table Map Event’, get the maximum column byte
store required for this BLOB column. This should return 3.

column_max_datasize=uint2korr(m_field_metadata);

The above value can be used to get actual data from
‘Write Rows Event’.

void *data_ptr; /* holds actual row data*/
longlong length; /* holds actual data length */
void *data_value; /* holds local data */
/* read the first few bytes to get the actual length */
if (column_max_datasize == 1)
length = *data ptr;
else if (column_max_datasize == 2)
length = uintkorr(data_ptr); /* read first two bytes to get the
length */
else if (column_max_datasize == 3)
length = unit3korr(data_ptr); /* read first three bytes to get the

length */
else if (column_max_datasize == 4)
length = uintdkorr(data_ptr); /* read first four bytes to get the
length */

/* allocate memory */

data_value = malloc(length);

/* now jump to data section to read actual data*/
data_ptr+= column_max_datasize;
memepy(data_value,data_ptr,length);

22

The following example shows byte sequence order of table
map event for table ‘t1’, database ‘test” describes as:

5 key int not null,
created date not null,
name char(30),

descvarchar(145) not null,

FIG. 8 shows the table Map Event Structure 246 in
accordance with an embodiment. The table map event is
represented by C++ class ‘CTableMapEvent’; and its Class
structure is as follows:

10

15 class CTableMapEvent : public CLogEvent

{
size t m_dbNameLen; /* database name string
length*/
char const *m_dbName; /* database name*/
size t m_tbINameLen; /* table name string length*/
20 char const *m_tbIName; /* table name */
ulong m_columnCnt; /* total number of columns */
uchar *m_colType; /* byte array of column types */
uchar *m_fieldMetadata; /* byte array of field
metadata*/
ulong m_tableld; /* table id of the table*/
col_md* m_columnMetadata; /* MYSQL VAM
25 representation
of column metadata */
}
. WriteRowsEvent

FIG. 9 shows a write Rows Event Structure 250 in
accordance with an embodiment. This event represents
MySQL INSERT operation. This event is preceded by Table
map event. Apart from generic header section, this event
contains additional data header section plus data section.
35 Data header (of 8 bytes) section contains following data,

which is similar to preceding Table Map Event.

table_id: 6 bytes length. It can be compared against
preceding table map event’s
table_id. But not much useful; MySQL VAM ignores this
40 value.

flags: MySQL VAM can ignore this flag.

The data section of WriteRowsEvent contains column
values arranged based on column orders. WriteRowsEvent is
represented by CWriteRowsEvent class. Data section con-
tains following information:

1 or 2 bytes—stores number of columns. Maximum

column supported in MySQL is 3398.

n bytes—column bitmap. This is an internal data structure
used by MySQL replication. MySQL VAM usually
ignores this value. Size is ((no_of_cols+7)/8).

n bytes—Indicates null column values in (little-endian
orders). Total size is usually ((no_of cols+7)/8). The
flag for the first column from the left is in the least-
significant bit of the first byte, the second is in the
second least significant bit of the first byte, the ninth is

55 in the least significant bit of the second byte, and so on.

n bytes—byte sequence of insert values. Variable column

values (such as VARCHAR, LOB, CHAR types) are
preceded by its length.

The following example shows byte sequence order of Writ-
6o €RowsEvent for a table t2.

45

50

SQL> Insert into t2 values (
1,
’2008-12-08°,
*Grizzly’,
65 ‘Special type of bear in masaimara’);

US 9,442,995 B2

23

UpdateRowsEvent

FIG. 10 shows an Update Rows Event Structure 254, in
accordance with an embodiment. This event represents
MySQL UPDATE operation. This event is preceded by
Table map event. Apart from generic header section, this
event contains additional data header section plus data
section. Data header (of 8 bytes) section contains following
data, which is similar to preceding Table Map Event.

table_id: 6 bytes length. It can be compared against
preceding table map event’s

table_id. flags: MySQL VAM can ignore this flag.

The data section of UpdateRowsEvent contains column
values arranged based on column orders. UpdateRowEvent
data section contains both before image as well as after
image data values. Unlike other logging system, MySQL
binary log stores entire copies of column values (both before
as well as after image values) instead of just storing primary
keys or updated columns. For example, updating one col-
umn on a table containing 100 columns; creates before
image copy of 100 column values as well as after image
copy of the same 100 columns. It is important for MySQL
VAM to compress (or filter) the data before sending the data
to MYSQL VAM API (extract). UpdateRowsEvent is rep-
resented by CUpdateRowsEvent class. The data section
contains following information:

1 or 2 bytes—stores number of columns. Maximum

column supported in MySQL is 3398.

n bytes—column bitmap. This is an internal data structure
used by MySQL replication. MySQL VAM usually
ignores this value. Size is ((no_of_cols+7)/8).

n bytes—after image column bitmap. This is an internal
data structure used by MySQL replication. MySQL
VAM usually ignores this value. Size is ((no_of_cols+
7)/8).

n bytes—Indicates null column values in (little-endian
orders) for before image data. Total size is usually
((no_of_cols+7)/8).

n bytes—byte sequence of values for before image data.
Variable column values (such as VARCHAR, LOB,
CHAR types) are preceded by its length.

n bytes—Indicates null column values in (little-endian
orders) for after image data. Total size is usually
((no_of_cols+7)/8).

n bytes—byte sequence of values for after image data.
Variable column values (such as VARCHAR, LOB,
CHAR types) are preceded by its length.

DeleteRowsEvent

This event represents MySQL DELETE operation. This
event is preceded by Table map event. Apart from generic
header section, this event contains additional data header
section plus data section. Data header (of 8 bytes) section
contains following data, which is similar to preceding Table
Map Event. DeleteRowsEvent is represented by CDelet-
eRowsEvent class

table_id: 6 bytes length. It can be compared against
preceding table map event’s table_id.

flags: MySQL VAM can ignore this flag

Data section of DeleteRowsEvent contains the column
values arranged based on column orders. Data section is
similar to WriteRowsEvent’s data section.

CRowsLogEvent C++ class

CWriteRowsEvent, CUpdateRowsEvent and CDelet-
eRowsEvent C++ classes inherit from CRowsLo-
gBvent C++ class. This class contains most of the
common operations specific to retrieving log data for
INSERT,UPDATE and DELETE operation.

10

15

20

25

24

class CRowsLogEvent : public CLogEvent

ulong m_tableld; /* Table ID */
ulong m_columnent; /* total no. of columns */
uchar *m_nullDataptr; /* pointer to null column
values*/
uchar *m_rowDataptr; /* pointer to the row data*/
¥
RotateEvent

The RotateEvent is logged in the binary log indicating
possible log rotation i.e. MySQL server closes the current
binary log and opens the new one. Possible scenarios for log
rotations are:

1. Size of the log file is exceeding ‘max_binlog_size’
parameter.

2. From MySQL command console, explicit ‘flush logs’
command has been issued.

In either of those cases, MySQL create a Rotate event in
the current binary log, closes the current binary log then it
opens a new binary log for further processing. Rotate event
contains new log file to be created. MySQL VAM uses this
value to close the existing binary log file and open the new
binary log file and continue its reading. Rotate event is
represented by CRotateEvent C++ class, defined as follows

class CRotateEvent: public CLogEvent

30{

35

40

45

50

55

60

65

public:
/* name of the new log
file name */

const char* m_newLogFile;

uint m_newLogRFileLen;

StopEvent

MySQL server logs StopEvent in the binary class when
explicit shutdown of the MySQL server. Subsequent start of
the MySQL server creates a new binary log file. StopEvent
does not contain any entries for new binary log file.
Event Order

FIG. 11 shows an Event Order 258 example in accordance
with an embodiment. This section illustrates event order in
the binary log for different scenarios. See Section titled
“Event Order” for various transaction scenarios. By way of
example, the following statements can been stored in the
binary log file as:

start transaction;

insert into t2 values (10,”Samplel0’);

insert into t3 values (20,”Sample20’, NOW());
commit;

FIG. 12 shows another Event Order 262 example in
accordance with an embodiment. By way of another
example, the following statements are stored in the binary
log file as:

start transaction;

update tl set a=50 where a=10;
savepoint Svl;

insert into t1 values (30,”Sample30°);
rollback to Svi;

commit;

US 9,442,995 B2

25

Data Types

This section describes the various supported data types
and storage requirements inside the binary log. MySQL
supports a number of data types in several categories:

numeric types, date and time types, and string (character) 5

types. Each type is stored within the log records as a set of
bytes. The number of bytes used depends on the data type,
whether the column is nullable, and the length of the field.
Variable length character fields (such as VARCHAR, VAR-

BINARY, CHAR, TEXT and BLOB etc) are preceded by its 10

length.

The data types CHAR, VARCHAR and TEXT can be
stored in ucs2 (maximum of 2 bytes per character) format or
utf8 format (either 2 or 3 bytes per character). For example,

26

a VARCHAR(255) column can hold a string with a maxi-
mum length of 255 characters. Assuming that the column
uses the latinl character set (one byte per character), the
actual storage required is the length of the string, plus one
byte to record the length of the string. For the string ‘abed’,
L is 4 and the storage requirement is five bytes. If the same
column is instead declared to use the ucs2 double-byte
character set, the storage requirement is 10 bytes: The length
of “abed’ is eight bytes and the column requires two bytes to
store lengths because the maximum length is greater than
255 (up to 510 bytes).

In accordance with an embodiment, LOB fields are stored
inline. LOB fields are preceded by its length. Supported data
types and their log size are described in Table 5.

TABLE 5

MySQL
Data Type

MySQL Internal

Data Type Log Size*

String Data Types

CHAR(M)

BINARY (M)
VARCHAR(M), VARBINARY
M)

ENUM(‘valuel’, “Value
2°,..0)

SET(‘valuel’,
“Value2’, .. .)

MYSQL_DTYPE_STRING M x w bytes, 0 <= M <= 255,
where w is the number of bytes
required for the maximum-length
character in the character set

M bytes, 0 <= M <= 255

L + 1 bytes if column values
require 0-255 bytes, L + 2 bytes
if values may require more than
255 bytes

1 or 2 bytes, depending on the
number of enumeration values
(65,535 values maximum)

1, 2, 3, 4, or 8 bytes, depending
on the number of set members
(64 members maximum)

MYSQL_DTYPE_STRING
MYSQL_DTYPE_VARCHAR

MYSQL_DTYPE_STRING

MYSQL_DTYPE_STRING

LOB Data Types

TINYBLOB,
TINYTEXT
BLOB, TEXT
MEDIUMBLOB,
MEDIUMTEXT
LONGBLOB,
LONGTEXT

MYSQL_DTYPE_BLOB L + 1 bytes, where L < 28

MYSQL_DTYPE_BLOB
MYSQL_DTYPE_BLOB

L + 2 bytes, where L < 2'¢
L + 3 bytes, where L < 2%*
MYSQL_DTYPE_BLOB L + 4 bytes, where L < 232

Numeric Data Types

TINYINT
SMALLINT
MEDIUMINT
INT, INTEGER
BIGINT
FLOAT(p)

FLOAT
DOUBLE
[PRECISION], REAL
DECIMAL(M, D),
NUMERIC(M, D)

MYSQL_DTYPE_TINYINT 1 byte
MYSQL_DTYPE_SHORT 2 byte
MYSQL_DTYPE_INT24 3 bytes
MYSQL_DTYPE_LONG 4 bytes
MYSQL_DTYPE_LONGLONG 8 bytes
MYSQL_DTYPE_FLOAT 4 bytes if 0 <= p <= 24, 8 bytes if
25 <=p <= 53
MYSQL_DTYPE_FLOAT 4 bytes
MYSQL_DTYPE_DOUBLE 8 bytes

Values for DECIMAL columns are
represented using a binary format
that packs nine decimal (base 10)
digits into four bytes. Storage for
the integer and fractional parts of
each value are determined
separately. Each multiple of nine
digits requires four bytes, and the
“leftover” digits require some
fraction of four bytes. The storage
required for excess digits is given
by the following table:

No. of

Bytes

MYSQL_DTYPE_NEWDECIMAL

Leftover Digits

[N S ™
W=D

US 9,442,995 B2

27
TABLE 5-continued

28

MySQL MySQL Internal
Data Type Data Type Log Size*
6 3
7 4
8 4
BIT(M) MYSQL_DTYPE_BIT (M + 7)/8 bytes
Date and Time Data Types
DATE MYSQL_DTYPE_NEWDATE 3 bytes
TIME MYSQL_DTYPE_TIME 3 bytes
DATETIME MYSQL_DTYPE_DATETIME 8 bytes
TIMESTAMP MYSQL_DTYPE_TIMESTAMP 4 bytes
YEAR MYSQL_DTYPE_YEAR 1 byte
15

Handling NULL Values

In accordance with an embodiment, binary log row event
(i.e WriteRowsEvent, UpdateRowsEvent and DeleteRow-
sEvent) does not store NULL column values along with
other non NULL column values. NULL column values are
stored as set of NULL bytes before the data section. Total
number of NULL bytes usually is (number of columns+7)/8.
Please refer to WriteRowsEvent (todo) for more informa-
tion.

NULL columns are stored in these NULL bytes section as
little endian orders. The flag for the first column from the left
is in the least-significant bit of the first byte, the second is in
the second least significant bit of the first byte, the ninth is
in the least significant bit of the second byte, and so on. Each
bit in the NULL byte can be masked to find out if the column
is holding NULL value or not. Following piece of code
checks if the column is NULL or not:

unsigned int null_byte=*data_ptr; /* read the NULL byte
value */
unsigned int null_mask= 1U;

for(int i=0;i<ncols;i++)
if ((null_mask & OxFF) == 0)

null_mask= 1U;
null_byte= *data_ptr++;

/* reset the NULL mask */
/* move to reading next NULL
byte */

}
if (null_byte & null_mask) /*check if the field is NULL*/
printf(“Column [%d]: Value: NULL ‘\n”, i+1);
null_mask <<= 1;

continue; /* skip processing the data */

null_mask <<= 1;
--- Do processing of non NULL field values

Empty strings are stored in binary log as zero length value.
Data Type Conversion

In accordance with an embodiment, CHAR, BINARY,
VARCHAR and VARBINARY Types—String data types are
variable in length. Actual data values are preceded by data
length. Also the value for the length could require either 1
byte (if the length is less than 255) or 2 bytes (if the length
is more than 255).

As described above, ‘fieldmetadata’ of a string column
(applies to CHAR, VARCHAR, BINARY and VARBI-
NARY types) helps to find out maximum value of the length.
Based on this value, actual length can be retrieved as
follows:

20

25

/* column_max_datasize value is set using preceding tablemapevent’s
fieldmetadata value
*/
int actual_data_len;
If(column_max_datasize) > 255

/* get the actual data lenth */
actual_data len = (int) (*data_ptr);
/* now jump to the data section */
data_ptr ++;

}

else

actual_data_len = uint2korr(data_ptr);
/* now jump to the data section */
data_ptr +=2;

30 }

35

40

45

50

55

60

65

/* move to the next column value */
data_ptr+=actual_data_len;

uint2korr() function is a MySQL provided macro defined in
config_win.h. This function reads first two bytes of a given
pointer and returns the corresponding integer value.

ENUM Type

In accordance with an embodiment, ENUM columns are
stored as index value in the log file. For example, for column
defined as ENUM (‘red,”‘orange’,blue’) can have index
value of 0,1 and 2. So storing ENUM value of ‘orange’ will
result in index value 2 in the binary log file. Maximum
enumeration index value supported is 65,535 bytes.

‘fieldmetadata’ of ENUM column type contains maxi-
mum bytes required for ENUM index value. Based on this
value, actual length can be retrieved as follows

/* column_max_datasize value is set using preceding tablemapevent’s

fieldmetadata value

*/

int enum_index_value;
if{column_max_datasize == 1) /* for ENUM index values

which are less than 255 */

{
enum_index_value = (int) (*data_ptr);
}
else /* for ENUM index values more than 255 */
{
enum_index_value = uint2korr(data_ptr);
SET Type

In accordance with an embodiment, SET column is a
string column that can have zero or more values, each of
which must be chosen from a list of allowed values specified
when the table is created. For example, a column specified
as SET(‘one’, ‘two’) can have any of these values: ‘one’;
‘two’; ‘one,two’. A SET can have a maximum of 64 different

US 9,442,995 B2

29

members. Set columns are stored as binary value in the log
file. For example, a column specified as SET(‘a’,b’,*c’,*d’),
the members have the following decimal and binary values:

TABLE 6
SET Member Decimal Value Binary Value
‘a’ 1 0001
‘b’ 2 0010
‘¢’ 4 0100
‘d’ 8 1000

So storing a SET(‘a’,‘b’) can result in decimal value of 3
(i.e. binary value of 0011). Since SET column can have a
maximum of 64 different members, so the maximum bytes
required to store those values could go as much as 8 bytes.
‘fieldmetadata’ of SET column type contains maximum
bytes required for SET decimal value. Based on this value,
actual length can be retrieved as follows:

/* column_max_datasize value is set using preceding tablemapevent’s

fieldmetadata value

*/

longlong set_decimal_value;

if (column_max_datasize == 1)

set_decimal_value=(int)*data_ptr;

else if (col_max_datasize == 2)
set_decimal_value = uint2korr(data_ptr);

else if (col_max_datasize == 3)
set_decimal_datavalue = uint3korr(data_ptr);

else if (col_max_datasize == 4)
set_decimal_value = uint4korr(data_ptr);

else if (col_max_datasize == 8)
set_decimal_value = uint8korr(data_ptr);

Integer Type

In accordance with an embodiment, Integer values are
stored as signed as well as unsigned integers in the binary
logs. Integers will be read as signed integer and send to
extract by MySQL VAM. The C type of the integer depends
on the size of the integer column, which can be determined
by the length. For the MySQL has C types defined for all
integer variants based on the size, and associated macros to
copy memory locations to integer values that are platform
independent. Table 7 shows the type to use for each length
and the associated macro:

TABLE 7
MYSQL TYPE Byte Length C Type Macro
TINYINT 1 int8 Direct assignment: il val =
*data_ptr

SMALLINT 2 intl6 sint2korr(data_ptr)
MEDIUMINT 3 int24 sint3korr(data_ptr)

INT, INTEGER 4 int32 sint4korr(data_ptr)
BIGINT 8 int64 sint8korr(data_ptr)

The integer value can be returned to the GoldenGate
MYSQL VAM as an integer of the specified size, so the data
conversion simply needs to use the appropriate macro, and
return the converted integer and the length as the integer
data.

10

15

20

25

30

35

40

45

50

55

30
Float, Double and Decimal Types

In accordance with an embodiment, for floating-point data
types, MySQL uses four bytes for single-precision values
and eight bytes for double-precision values. MySQL allows
a non-standard syntax: FLOAT(M,D) or DOUBLE (M,D).
Here, “(M,D)” means than values can be stored with up to
M digits in total, of which D digits may be after the decimal
point. For the MySQL has macros for float and double
column types to copy memory locations to float or double
values that are platform independent. Table 8 shows the type
to use for each length and the associated macro:

TABLE 8
MYSQL TYPE Byte Length C Type Macro
FLOAT 4 Float Floatdget(data_ptr)
DOUBLE 8 double Float8get(data_ptr) or

doubleget(data_ptr)

The float and double value can be returned to the Gold-
enGate MYSQL VAM as a float of the specified size, so the
data conversion simply needs to use the appropriate macro,
and return the converted float and the length as the float data.

The DECIMAL (or NUMERIC) data types are used to
store exact numeric data values. These types are used to
store values for which it is important to preserve exact
precision, for example with monetary data. Prior to the
releases of MySQL (earlier than 5.0.3), DECIMAL and
NUMERIC values are stored in string format.

Values for DECIMAL columns are represented using a
binary format that packs nine decimal (base 10) digits into
four bytes. Storage for the integer and fractional parts of
each value are determined separately. Each multiple of nine
digits requires four bytes, and the “leftover” digits require
some fraction of four bytes. The storage required for excess
digits is given by Table 9:

TABLE 9

Leftover Digits No of Bytes

WA W= O
APphLWWNON~R~O

MySQL provides functions for decimal column type that
can copy memory locations containing decimal values and
convert them into string values. MySQL VAM uses
‘bin2decimal’ function to read the memory location and fill
this value into ‘decimal_t” structure. Another function ‘deci-
mal_bin_size’ simply converts this ‘decimal_t’ structure and
return the value as string. This is explained in the following
lines of code.

/* from fieldmetada (table_map_event), retrieve precision and scale value for the decimal

columns™*/

precision = *field_metadata;
scale = *(field_metadata+1);
/* retrieve decimal value from the row data (from rows_log event)*/

US 9,442,995 B2

31

-continued

32

char decimal_string_buf[200];
int decimal_string len = sizeof(decimal_string buf) — 1;
decimal_digit t dec_buf{ DECIMAL_MAX_PRECISION];
decimal_t dec;

dec.len= precision;

dec.buf= dec_buf;

bin2decimal((uchar *)data_ptr, &dec, precision, scale);
structure®/ int size = decimal_bin_size(precision, scale);

/* buffer that holds decimal value in string form*/

/*convert to ‘decimal_t’
/*get the total byte size*/

decimal2string(&dec, decimal_string_buf, &decimal_string_len, 0, 0, 0); /*convert to

string*/

decimal_string buf[decimal_string len]= 0;

printf(“Column [%d]: Type: MYSQL_TYPE_NEWDECIMAL Value: %s\n”,
i+1, decimal_string buf);

data_ptr+=size; /* jumps to next column value*/

The decimal value can be returned to the GoldenGate
MYSQL VAM as a string, so the data conversion simply
needs to use the appropriate macro, and return the converted
decimal value.

BIT Type

In accordance with an embodiment, BIT type column
stores up to 64 bits per value. Maximum storage required is
(M+7)18 bytes, where ‘M’ indicates number of bits per
value. MYSQL VAM retrieves BIT column value from
binary log using the following code

/* from fieldmetada (table_map_events), retrieve maximum byte storage
required for BIT columns*/

col_max_datasize = *field_metadata;

/* retrieve decimal value from the row data (from rows_log event)*/
longlong val;

switch (col_max_datasize)

case 1:
case 2:
case 3:
case 4:
case 5:

val =(ulonglong)ptr[0]; break;

val =(ulonglong)mi_uint2korr(ptr);break;

val =(ulonglong)mi_uint3korr(ptr);break;

val =(ulonglong)mi_uint4korr(ptr);break;

val =(ulonglong)mi_uintSkorr(ptr);break;

case 6: val =(ulonglong)mi_uint6korr(ptr);break;

case 7: val =(ulonglong)mi_uint7korr(ptr);break;

default: val= (ulonglong) mi_uint8korr(ptr + col_max_size —
sizeof(longlong)); break;

printf(“Column [%d]: Type: MYSQL_TYPE_SET Binary Value is:
%d\n”, i+1, val);
ptr+=col_max_datasize; /* move to next data section */

DATE, TIME, YEAR, DATETIME and TIMESTAMP
Types

Date and Time type conversion is the most complex of all
data conversions. Compared other data types, MySQL does
not exposes MACROS or public functions for handling Date
and Time types. MySQL internal implementations were
debugged to find out the proper way to handle those calls.
MySQL VAM has rewritten its own version of code based on
the MySQL internal implementation. MYSQL VAM
retrieves binary data from the log and converts them into
common structure MySQL_TIME (this structure is defined
and used by MySQL). Later those structures can be trans-
formed to string before handing over to extract.

MYSQL_TIME is defined as
typedef struct st_mysql_time
{
unsigned int year, month, day, hour, minute, second;
unsigned long second_part;
my_bool neg;
enum enum_mysql_timestamp_type time_type;
} MYSQL_TIME;

20

25

30

35

40

45

50

55

60

65

DATE types are stored in packed three-byte integer form
as DD+MMx32+YYYYx16x32. The supported range is
€1000-01-01" to <9999-12-31". DATE columns are retrieved
from binary log using following code

MYSQL_TIME tm;
uint32 tmp=(uint32) uint3korr(data_ptr); /* retrieve 3 byte DATE value*/
tm.day= tmp & 31;
tm.month= (tmp >> 5) & 15;
tm.year= (tmp >> 9);
printf(“Column [%d]: Type: MYSQL_TYPE_NEWDATE Value:
%02d-%02d-%02d \n”, i+1,
tm.year,tm.month,tm.day);

data_ptr+=3; /* move to next data section

TIME types are stored in packed three-byte integer as
DDx24x3600+HHx3600+MMx60+SS. TIME columns are
retrieved from binary log using following code

MYSQL_TIME tm;

uint32 tmp=(uint32) uint3korr(data_ptr); /* retrieve 3 byte DATE value*/
tm.hour= (int) (tmp/10000);

tmp—=tm.hour*10000;

tm.minute= (int) tmp/100;

tm.second= (int) tmp % 100;

tm.second_part=0;

printf(“Column [%d]: Type: MYSQL_TYPE_TIME Value:
%dHr:%dMin:%dSec \n”, i+1,

tm.hour,

tm.minute, tm.second);

data_ptr+=3; /* move to next data section

YEAR types are stored in 1 byte integer. Values can be
YYYY’ (with the value range of 1901 to 2155) or ‘YY’
(value range of 70 (1970) to 69 (2069)) format. YEAR
column values are retrieved from binary log using the
following code

int year_val= *data_ptr; /* retrieve 1 byte year value */
year_val+=1900; /* add to 1900 to get actual value */
printf(“Column [%d]: Type: MYSQL_TYPE_YEAR Value: %d\n”,
i+1, year_val);

data_ptr+=1; /* move to next data section

The DATETIME type is used when values are needed that
contain both date and time information. The supported range
is “1000-01-01 00:00:00" to <9999-12-31 23:59:59°. DATE-
TIME types are stored as 8 byte integer containing a
four-byte integer packed as YYYYx10000+MMx100+DD;
a four-byte integer packed as HHx10000+MMx100+SS.
DATETIME column values are retrieved form binary log
using following code:

US 9,442,995 B2

33

34

MYSQL_TIME tm;

uint32 partl part2;

longlong val= (longlong)uint8korr(data_ptr);
partl=(uint32) (val/LL(1000000));
part2=(uint32) (val - (ulonglong) part1*LL(1000000));
tm.neg= 0;

tm.second_part=0;

tm.second= (int) (part2%100);

tm.minute= (int) (part2/100%100);
tm.hour= (int) (part2/10000);

tm.day= (int) (part1%100);
tm.month= (int) (partl/100%100);

tm.year= (int) (part1/10000);

printf(“Column [%d]: Type: MYSQL_TYPE_DATETIME Value: %02d-%02d-%02d

9602d:2602d:%02d \n”, i+1,

tm.year,tm.month,tm.day,tm.hour,tm.minute,tm.second);

data_ptr+=8; /*move to next data section */

TIMESTAMP type is of four-byte integer representing
seconds UTC since the epoch (ranges from ‘1970-01-01
00:00:01” UTC to ‘2038-01-09 03:14:07° UTC). TIME-
STAMP column values are retrieved form binary log using
following code

struct tm tmp_tm,;
MYSQL_TIME tm;
time_t tmp_t= (time_t)uint4korr(data_ptr); /* read the binary
log data */
/* get the local
time value */
/* adjust this with
MYSQL_TIME
structure®/
printf(“Column [%d]: Type: MYSQL_TYPE_TIMESTAMP Value:
%02d-%02d-%02d %02d:%02d:%02d \n”, i+1,
tm.year, tm.month, tm.day, tm.hour,tm.minute, tm.second);
data_ptr+=4; /*move to next data section */
locatime_r() and localtime_to_TIME() are MySQL supplied functions.

localtime_r(&tmp_t, &tmp_tm);

localtime_to_TIME(&tm, &tmp_tm);

LOB Data Types

In accordance with an embodiment, MySQL LOB-
MySQL stores LOB records (Large Objects—namely TINY-
BLOB, BLOB, MEDIUM BLOB, LONG BLOB and TEXT
types) inline with other column values. BLOB or TEXT
column data are stored in similar way as VARBINARY or
VARCHAR fields. I.e. the first few bytes stores the length
followed by original LOB value. For LOB columns, ‘field
metadata’ of Table Map Events contains maximum byte
storage required for a given LOB field. This value comes
handy when allocating memory needed to retrieve LOB
values. The Maximum size for TINYTEXT and TINY-
BLOB columns is 255. This is similar to handling CHAR
and BINARY columns.

The Maximum size for TEXT and BLOB columns is 64
k. This is similar to handling VARCHAR and VARBINARY
columns. Values stored in TINYTEXT, TEXT, TINYBLOB
and BLOB columns can be sent to extract in one single shot.
For other LOB types, data can be read in one chunk at a time
of 64 k in size and send to extract. Following lines of code
explains handling of MYSQL LOB columns.

/* from fieldmetada (table_map_events), retrieve maximum byte storage
required for LOB columns*/
col_max_datasize = *field_metadata;
/* retrieve decimal value from the row data (from rows_log event)*/
longlong lob_size;
switch (col_max_datasize)
{
case 1: lob_size =(ulonglong)data_ptr[0]; break;
case 2: lob_size =(ulonglong)uint2korr(data_ptr);break;

20

-continued

case 3: lob_size =(ulonglong)uintdkorr(data_ptr);break;
case 4: lob_size =(ulonglong)uint8korr(data_ptr);break;
}
/* now point to the data section */
data_ptr+=col_max_datasize;
if (lob_size < GG_MAX_CHUNK_SIZE)

25 {
/* send the LOB data in one single chunk to extract */
¥
else
{
/* send the LOB data in multiple chunks to extract */
30

35

40

45

50

55

60

65

data_ptr+=lob_size; /*move to the next column value */

For other LOB types such as MEDIUM BLOB and
LONG BLOB (which can hold more than 64 k bytes of
data), data can be read in one chunk at a time of 32 k in size
and send to extract in multiple calls. As described above,
LOB column values are stored in line with other non LOB
column values. This is different from other databases since
the values are not stored inline as well as accessed using
locator or coupon where the data can be fetched on demand.
This is not the case for MySQL database (with the storage
engine MyISAM as well as InnoDB). For reading LOB
column value from the binary log, MySQL internal
IO_CACHE class fetches entire value of this LOB column
from the log file to the memory. i.e., memory is allocated
completely in one shot for this LOB column by this class.

In accordance with an embodiment, the MYSQL VAM
API specification outlines that LOB data of bigger sizes
should be sent to MYSQL VAM API in chunks. But in
MySQL case, the data is already fetched completely in
memory by MySQL internal classes (i.e memory is allocated
completely by the IO_CACHE object), LOB data can be
sent to MYSQL VAM APl in one call as well as multiple call
in chunk size of 32 k bytes.

Working with Binary Logs

As described above in accordance with an embodiment,
MySQL uses binary log index file to maintain the list
containing current binary log file as well as older log files.
This index file is present in the same directory location as
binary log. This allows the system to read from the con-
figuration file to find out the log file format, for example in
ROW, STATEMENT, or MIXED format and abend if it is
not ROW.

When a MySQL server creates a new binary log file
(during startup or by explicit ‘flush logs’ command), it
writes BINLOG_MAGIC value (4 bytes) and ‘Format
description event’. This Format description is written only
once for given binary log.

US 9,442,995 B2

35

‘flag’ attribute of this Format description event tracks if
the current binary log is in use by the server. MySQL server
sets this status to LOG_EVENT_BINLOG IN _USE F
value during the start up and clears this value during
shutdown or log rotation. This can be treated as reliable
indicator to check if binary log is closed properly or not.

During initialization, MySQL VAM needs to obtain the
name of the active binary log file. MySQL VAM uses
following steps to obtain the name of active binary log. The
same procedure is used by MySQL server to obtain the
current binary log:

1. Get the MySQL installation home, either from envi-
ronment variable or supplied MYSQL VAM parameter

2. Read MySQL initialization file—my.ini in windows
platform or my.conf in other platform.

3. Obtain the value of ‘log-bin’ parameter. Find out log
directory location as well as log index file name from this
value.

4. Opens the log index file name and read the content.
From this content, find out the last log file in the list.

5. Open this log file and check if the log file is still in use
by the server (checking Format description event’s flag
value to LOG_EVENT_BINLOG_IN_USE_F). If yes, then
MySQL server is using this log file currently for writing.
MySQL VAM treats this log file as active log file.
Positioning Binary Log

In accordance with an embodiment, MYSQL VAM API
can request MySQL VAM to position either by timestamp
value or sequence number. In extract, positioning can be
requested by either ADD or ALTER commands in GGSCI.
In addition to support positioning by timestamp and
sequence number in MYSQL VAM, the system supports
positioning to end as well as begin of active binary log.
Positioning by Sequence Number

In accordance with an embodiment, when sending trans-
action record to extract, MySQL VAM also sends sequence
number value to extract. During the restart scenario, extract
send this last received sequence number value to MySQL
VAM during MYSQL VAMInitialize() call. MySQL VAM
uses this value to set the correct read position.

MySQL VAM send this sequence number value as ASCII
string using GG_ATTR_DS_SEQID. MySQL VAM creates
this ASCII string as combination of current log file and
current event position (i.e 1og.000001:10045) before send-
ing this value to extract.

To position by sequence number during MYSQL
VAMInitialize() call, MySQL VAM parses the sequence
number value from extract, and get the log file name as event
position. Then it opens the corresponding log file and start
scanning for events. If the event’s position matches with the
one specified in the sequence number, MySQL VAM set this
position as current read position and start reading the binary
log content from this position.

Positioning by Timestamp Value

In order, to position by timestamp, the system must find
a begin transaction record in the active binary log (i.e
QueryEvent containing ‘BEGIN’ string) with timestamp
equal to or greater than the required timestamp value. If the
timestamp value is a time in the future, the system can keep
reading at the end of log, until it sees a Begin Transaction
record with a timestamp equal or greater than required
timestamp position. There are two scenarios that could occur
in or with the binary log:

Scenario 1: Begin/End transaction record exists in the
active binary log and first such record’s timestamp is less
than required timestamp position. In this scenario, MySQL
VAM will scan the active binary log file to find a begin

15

20

25

30

40

45

55

36

transaction record whose timestamp value is greater than or
equal to required timestamp position. If MySQL VAM could
not find the required record, it will be positioned at the end
of log.

Scenario 2: First Begin/End Transaction record in the
active binary log has a timestamp value that is greater than
or equal to required timestamp position. This scenario can
become tricky. In this scenario, it is possible that older
binary logs may also have begin transaction records with
timestamps equal to the required timestamp value.

In accordance with an embodiment, the MySQL VAM
scans the binary log starting with the latest to oldest. (Order
is maintained in the log index file). If MySQL VAM do not
find a begin/end transaction record with timestamp equal to
required the timestamp, then MySQL VAM either return an
error or position at the beginning of the oldest log file.
Positioning by timestamp could be time consuming process
since MySQL VAM might need to open older log files and
searches for an event entry matches with that time stamp.
Positioning to the End of Log

In accordance with an embodiment, to position to end of
active binary log, MySQL VAM will use my_b_seek()
function to request IO_CACHE class to seek to the end of
the log.

Positioning to Begin of Log

In accordance with an embodiment, to position to begin-
ning of transaction log, MySQL VAM will call my_b_
seek()function to position beginning of the log at the
location after BINLOG_MAGIC plus global format descrip-
tion event data.

Reading Binary Log

In accordance with an embodiment, MySQL VAM uses
MySQL’s IO_CACHE C++ class and file utility functions to
open and read MySQL binary logs. MySQL 10_CACHE
C++ class (part of mysql_client.lib) reads content of the
binary log in chunks of 64 k in size. This buffered read helps
the reduced IO usage.

In order to find out the correct sequence of reading binary
log files, various internal modules of MySQL such as
‘mysqlbinlog’ utility and ‘replication slave thread’ module
were debugged. Following lines of code initializes the
IO_CACHE class and open and read a binary log file.

/* opens the logfile name using MYSQL’s my_open utility */
((fd = my_open(logname, O_RDONLY | O_BINARY,
MYF(MY_WME))) < 0)

return 1;

/* Initialize the IO_CACHE object so that it can start reading the

events */

if (init_io_cache(file, fd, 0, READ_CACHE,

start_position_mot, 0,

MYFMY_WME | MY_NABP)))

my_close(fd, MYF(MY_WME));
return 1;

}

/* check the BINLOG_MAGIC and version of the binary log file */
check_header(file, &glob_description_event);

/* start reading the events*/

for (;3)

my_off told off = my_b_tell(file);

void *tmpbuf = NULL;

/* read one event at a time from binary log*/
Log event* ev = Log_event::read_log_event(file,
glob_description_event);

/* no event. check if eof is reached*/

if (tev)

US 9,442,995 B2

37

-continued

/* check if the binary log is active. If yes, comeback and
re read again */
if (glob_description_event—>getFlags() &
LOG_EVENT_BINLOG_IN_USE_F)
continue;
¥

else

break;
/* now process the event */
error = processevent(ev);

¥
my_close(fd, MYF(MY_WME));
end_io_cache(file);

Log Rotation

In accordance with an embodiment, the following sce-
nario causes MySQL’s log rotation (i.e. closing existing
active log file and open the new log file)

1. When active log file size exceeds the value of ‘max_
binlog_size’ (specified in my.ini or my.conf)

a. MySQL logs ‘Rotate Event’ in the active binary log.
Rotate Event data section contain location and name of
the new active binary log file.

b. MySQL closes active binary log and reset the Format
description event flag to NULL.(this flag was set pre-
viously with LOG_EVENT_BINLOG_IN_USE_F
value)

c. MySQL creates a new binary log and set the Format
description event flag to LOG_EVENT_BINLOG_IN_
USE_F value.

2. When explicit ‘flush logs’ command is issued in the

MySQL SQL prompt.

a. MySQL logs ‘Rotate Event’ in the active binary log.
Rotate Event data section contain location and name of
the new active binary log file.

b. MySQL closes active log and reset the Format descrip-
tion event flag to NULL.(this flag was set previously
with LOG_EVENT_BINLOG_IN_USE_F value)

c. MySQL creates a new binary log and set the Format
description event flag to LOG_EVENT_BINLOG_IN_
USE_F value.

3. During server shutdown

. MySQL logs ‘Stop Event’ in the active binary log

. MySQL closes the binary log. Also resets the format
description event’s flag to NULL value.(this flag was
set previously with LOG_EVENT_BINLOG_IN_
USE_F value)

4. During the server startup

a. MySQL creates a new binary log and set the Format
description event flag to LOG_EVENT_BINLOG_IN_
USE_F value.

As described above, in accordance with an embodiment,
MySQL VAM uses Rotate Event identify the occurrence of
log rotation and uses the Rotate Event’s data to get the next
binary log name. MySQL VAM opens the next binary log
and continuous its binary log reading. In order to handle
scenario 3 and 4, when MySQL VAM encounters Stop
Event, it closes the binary log that it uses and checks the log
index file for the presence of next binary log. If MySQL
VAM finds a next binary log in the index file, it opens the
binary log and continuous its reading. If MySQL VAM could
not find any new log file name in the index file (server is still
in the shutdown mode, never started after the shutdown),
MySQL VAM informs extract to abend.

There is one more interesting scenario to consider. During
server crash, there is a small chance that flag of the Format

o

10

15

20

25

30

35

40

45

50

65

38

description event is not going to be reset by the server during
the server restart. Also MySQL server neither logs the Rotate
Event nor logs the Stop Event in the active binary log file.
So the subsequent startup, server creates new binary log file
with out resetting flag in the previous binary log. So in this
unique situation, two binary logs having LOG_EVENT_
BINLOG_IN_USE_F status flag set. MySQL VAM might
encounters this scenario under following conditions:

1. MySQL VAM is currently processing active binary log.
Server crash happens at the time of reading. It is advisable
to stop the extract, do the crash recovery and restart the
MYSQL VAM after the server startup.

2. MySQL VAM is positioned to read older log file. While
reading from one file to another file (i.e log rotation), it
encounters a log file flag with the value of LOG_EVENT_
BINLOG_IN_USE_F. Also note that this log file is not the
latest log file (i.e not an active binary log). When EOF is
occurred, MySQL VAM could check the log index file for
the existence of next log file. In this case, MySQL VAM
assumes that server crash was happened previously and
close the exiting log file and open the next log file and do the
continues log reading.

MYSQL VAM Class Design

As described above, in accordance with an embodiment,
the MySQL VAM implementation is written using C++;
wherein implementation of the MYSQL VAM module is
split into 2 major parts. The first part reads the binary log
events using internally developed event C++ classes, pro-
cess them in to data records, make the records in readymade
format (ready to send) and store it into limited size Queue.
The Second part fetches the records from Queue and sends
it to API whenever it has got request from APIL
Binary Log Reader

FIGS. 13A-13C shows a Class Diagram for the VAM
Binary Log Reader 266 in accordance with an embodiment.
CMySQLBinl.ogManager class is the main control class,
which manage the complete process and delegates the tasks
to different classes. It is mainly responsible for reading data
from the binary log, process the binary log data (converts
MySQL events to data record) and put the record (ready-
made) into the limited size Queue. It is derived from
CLogManager class, which has all the functions as “pure
virtual”.

The design has CMySQLBinLogReader class, which is
responsible for fetching data from binary log, it uses various
C++ event classes and MySQL’s I0_CACHE classes to
manage the lifecycles of binary log as wells event instances.
It also uses CFilterBinl.og to filter the events.

CLogProcessor class is going to process binary log data
and it fills the limited size Queue (CRecordQueue) with
prepared readymade object. Later on these objects would be
fetched by some other class to send it to APIL.

CRecordQueue class is responsible for storage of ready-
made records (CRecord).

From the top, the process would start from the scanl.og
function of CMySQLBinLogManager class, it is separate
execution entity (thread), which runs independently and it is
responsible for complete process execution. It first asks for
binary log reading to CMySQLBinl.ogReader and it gets the
raw event instance from it. It passes this record to CLog-
Processor to process it further and put into limited size
Queue.

Binary Log Processor

FIG. 14 shows a Class Diagram for a Binary Log Pro-
cessor 270 in accordance with an embodiment.

CMySQL VAMModule is the main control class for
complete MYSQL VAM Module; it is a singleton class,

US 9,442,995 B2

39
which has only 1 object throughout the life of MYSQL VAM
Module. It has all the core business logic inside in it, and it
delegates the tasks across various classes.

MySQL VAM Module has published 4 functions to API
that are MYSQL VAMInitialize, MYSQL VAMRead,
MYSQL VAMMessage and MYSQL VAMControl. Busi-
ness logic of these functions is residing in CMySQL VAM-
Module class. It fetches CRecord (ready made record put
into Queue by design’s first part) from CRecordQueue and
sends it to API through CMySQL VAMCommunicator class.

CMySQL VAMCommunicator class will be responsible
for how to send and get data from/to API; it shall use
CMySQL VAMApi class to use published functions from
API. CMySQL VAMApi class is wrapper around API pub-
lished functions.

CErrorContainer class shall store error object in it and
would used to handle the error prone scenarios.

Whenever MYSQL VAM published functions (i.e.
MYSQL VAMInitialize) called from API, the flow would be
directed to CMySQL VAMModule class and it will redirect
flow to some other class and would return the data to API.
For example if MYSQL VAMRead has been called from
API, CMySQL VAMModule’s MySQL VAMRead will be
called and it would fetch the data from CRecordQueue and
send it to API through CMySQL VAMCommunicator class.

The present invention may be conveniently implemented
using one or more conventional general purpose or special-
ized digital computer, computing device, machine, or micro-
processor, including one or more processors, memory and/or
computer readable storage media programmed according to
the teachings of the present disclosure. Appropriate software
coding can readily be prepared by skilled programmers
based on the teachings of the present disclosure, as will be
apparent to those skilled in the software art.

In some embodiments, the present invention includes a
computer program product which is a non-transitory storage
medium or computer readable medium (media) having
instructions stored thereon/in which can be used to program
a computer to perform any of the processes of the present
invention. The storage medium can include, but is not
limited to, any type of disk including floppy disks, optical
discs, DVD, CD-ROMs, microdrive, and magneto-optical
disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs,
VRAMs, flash memory devices, magnetic or optical cards,
nanosystems (including molecular memory ICs), or any type
of media or device suitable for storing instructions and/or
data.

The foregoing description of the present invention has
been provided for the purposes of illustration and descrip-
tion. It is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. Many modifica-
tions and variations will be apparent to the practitioner
skilled in the art. In particular, while the embodiments
described illustrate the use of a MySQL environment, and a
MySQL VAM, it will be evident that other types of VAM can
be implemented with other types of database or system. The
embodiments were chosen and described in order to best
explain the principles of the invention and its practical
application, thereby enabling others skilled in the art to
understand the invention for various embodiments and with
various modifications that are suited to the particular use
contemplated. It is intended that the scope of the invention
be defined by the following claims and their equivalence.

10

15

20

25

30

35

40

45

50

55

60

65

40

What is claimed is:

1. A system for data replication between a source database
and a target database, comprising:

a computer including a micro-processor;

a source database having data stored therein, and one or
more binary logs associated therewith which record
event data describing changes made to the data during
a transaction at the source database;

a replication module running on the computer and includ-
ing a plurality of reader and processor classes, each
class executing on a dedicated thread, to replicate the
changes made to the data at the source database, for use
with a target database, by
reading, from the one or more binary logs, the event

data describing the changes made to the data during
the transaction,
processing the event data to determine events describ-
ing one or more full or partial data changes at the
source database, and
storing records into a record queue of a particular size,
wherein the records reflect the determined events;
wherein, upon a subsequent request to replicate data to the
target database, the system invokes a plurality of record
classes to retrieve the records stored in the record queue
to create a trail file, wherein the trail file is then
communicated to the target database and used therein
to replicate the changes made to the data, from the
source database to the target database.

2. The system of claim 1, wherein all of the event data are
statements that operate to modify data in the source data-
base.

3. The system of claim 1, wherein the replication module
is configured to receive event data that represent modifica-
tions to the source database only.

4. The system of claim 1, further comprising one or more
libraries that access the source database.

5. The system of claim 4, wherein the replication module
includes one or more binary log classes that wrap around the
libraries.

6. The system of claim 1, wherein the replication module
is configured to read event data from one or more additional
binary log files.

7. The system of claim 1, wherein the source database
includes transactional tables, and updates to the transac-
tional tables are cached until committed.

8. The system of claim 1, wherein the source database
includes non-transaction tables, and updates to the non-
transaction tables are received into the binary log file when
executed.

9. A method that uses log-based replication to transfer
data between a source database and a target database,
comprising:

providing a replication module including a plurality of
reader and processor classes on a computing device,
wherein the computing device includes a processor and
a source database having data stored therein, and one or
more binary logs associated therewith which record
event data describing changes made to the data during
a transaction at the source database;

using the plurality of reader and processor classes, each
class executing on a dedicated thread, to replicate, the
changes made to the data at the source database, for use
with a target database, including
reading, from the one or more binary logs, the event

data describing the changes made to the data during
the transaction,

US 9,442,995 B2

41

processing the event data to determine events describ-
ing one or more full or partial data changes at the
source database, and

storing records into a record queue of a particular size,
wherein the records reflect the determined events;
and

invoking a plurality of record classes to retrieve the

records stored in the record queue to create a trail file,
upon a subsequent request to replicate data to the target
database, wherein the trail file is then communicated to
the target database and used therein to replicate the
changes made to the data, from the source database to
the target database.

10. The method of claim 9, wherein all of the event data
are statements that operate to modify data in the source
database.

11. The method of claim 9, wherein the replication
module is configured to receive event data that represent
modifications to the source database only.

12. The method of claim 9, wherein one or more libraries
access the source database.

13. The method of claim 12, wherein the replication
module includes one or more binary log classes that wrap
around the libraries.

14. The method of claim 9, wherein the replication
module is configured to read event data from one or more
additional binary log files.

15. The method of claim 9, wherein the source database
includes transactional tables, and updates to the transac-
tional tables are cached until committed.

16. The method of claim 9, wherein the source database
includes non-transaction tables, and updates to the non-
transaction tables are received into the binary log file when
executed.

17. A non-transitory computer readable storage medium,
including instructions stored thereon, wherein the instruc-
tions, when read and executed by a computer, cause the
computer to perform the steps comprising:

10

15

20

25

30

35

42

providing a replication module including a plurality of

reader and processor classes on a computing device,

wherein the computing device includes a processor and

a source database having data stored therein, and one or

more binary logs associated therewith which record

event data describing changes made to the data during

a transaction at the source database;

using the plurality of reader and processor classes, each

class executing on a dedicated thread, to replicate, the

changes made to the data at the source database, for use

with a target database, including

reading, from the one or more binary logs, the event
data describing the changes made to the data during
the transaction,

processing the event data to determine events describ-
ing one or more full or partial data changes at the
source database, and

storing records into a record queue of a particular size,
wherein the records reflect the determined events;
and

invoking a plurality of record classes to retrieve the

records stored in the record queue to create a trail file,
upon a subsequent request to replicate data to the target
database, wherein the trail file is then communicated to
the target database and used therein to replicate the
changes made to the data, from the source database to
the target database.

18. The non-transitory computer readable storage medium
of claim 17, wherein all of the event data are statements that
operate to modify data in the source database.

19. The non-transitory computer readable storage medium
of claim 17, wherein the replication module is configured to
receive event data that represent modifications to the source
database only.

20. The non-transitory computer readable storage medium
of claim 17, wherein one or more libraries access the source
database.

